[1]徐金英,邹 辉,王经波,等.长江干流主要重金属污染状况及其来源解析[J].华东地质,2021,42(01):21-28.[doi:10.16788/j.hddz.32-1865/P.2021.01.003]
 XU Jinying,ZOU Hui,WANG Jingbo,et al.Pollution status and potential sources of main heavy metals in the main stream of the Yangtze River[J].East China Geology,2021,42(01):21-28.[doi:10.16788/j.hddz.32-1865/P.2021.01.003]
点击复制

长江干流主要重金属污染状况及其来源解析()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
42
期数:
2021年01期
页码:
21-28
栏目:
生态环境保护与修复
出版日期:
2021-05-30

文章信息/Info

Title:
Pollution status and potential sources of main heavy metals in the main stream of the Yangtze River
文章编号:
2096-1871(2021)01-021-08
作者:
徐金英1邹 辉2王经波2 3郭宇菲2 3王晓龙2
1.南昌大学资源环境与化工学院,鄱阳湖环境与资源利用教育部重点实验室, 江西 南昌 330031; 2.中国科学院南京地理与湖泊研究所,中国科学院流域地理学重点实验室,江苏 南京 210008; 3.中国科学院大学,北京 100049
Author(s):
XU Jinying1 ZOU Hui2 WANG Jingbo23 GUO Yufei23 WANG Xiaolong2
1. Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China; 2. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
长江干流 重金属 污染 来源解析 地表水
Keywords:
main stream of the Yangtze River heavy metal pollution source analysis surface water
分类号:
X131.2
DOI:
10.16788/j.hddz.32-1865/P.2021.01.003
文献标志码:
A
摘要:
沿长江干流从上游至下游采集84个点位样品,分析其表层水体重金属污染状况及可能来源。研究结果显示,长江干流重金属空间变化差异性明显:从上游至下游,长江干流Cu、Zn、Al浓度变化不明显,Mn和Ni浓度呈波动上升趋势,Cd和Pb浓度呈波动上升下降趋势。与已有研究相比,长江干流水体重金属污染呈不断增加趋势,人类活动对其影响明显。单因子污染评价显示,长江水体污染较轻,且对周边居民不存在致癌和非致癌健康风险。污染物来源解析显示,Cd、Pb、Ni可能主要来源于工业废气及废水; Al、Mn可能主要来源于自然过程及矿产开采; Cu可能主要来源于农业活动和矿产开采; Zn可能主要是农业和工业废水的混合来源。长江干流水体重金属污染不断加重的趋势需要引起关注。
Abstract:
In this study, we analyzed the pollution status and potential sources of heavy metals in the surface water of the main stream of Yangtze River. The results showed that the spatial distribution of metal concentrations from upstream to downstream of Yangtze River was significantly different, Cu, Zn and Al concentrations did not change significantly, Mn and Ni concentrations increased with fluctuation, while Cd and Pb concentrations increased and decreased with fluctuation. Heavy metal concentrations in the main stream of the Yangtze River increased compared with existing studies, which indicated the influence of human activities. However, the single-factor pollution evaluation showed that metals lightly polluted Yangtze River water and caused no carcinogenic and non-carcinogenic health risks to surrounding residents. The source analysis indicated that Cd, Pb and Ni may mainly be from industrial waste gas and wastewater, Al and Mn may be mainly derived from natural processes and mineral mining, Cu may be mainly derived from agricultural activities and mineral mining, Zn may mainly come from agriculture and industrial wastewater. Attention should be paid to the growing metal pollution of the main stream of Yangtze River because of anthropogenic activities.

参考文献/References:

[1] XU J Y, ZHENG L L, XU L G, et al. Uptake and allocation of selected metals by dominant vegetation in Poyang Lake wetland: From rhizosphere to plant tissues[J]. Catena, 2020, 189(9): 104477.
[2] SHIM M J, CAI Y, GUO L, et al. Floodplain effects on the transport of dissolved and colloidal trace elements in the East Pearl River, Mississippi[J]. Hydrological Processes, 2017, 31(5): 1086-1099.
[3] CANPOLAT ? VAROL M, OKAN ?? et al. A comparison of trace element concentrations in surface and deep water of the Keban Dam Lake(Turkey)and associated health risk assessment[J]. Environmental Research, 2020, 190: 110012.
[4] LI X, HUANG S, MCBRIDE M B. Rhizosphere effect on Pb solubility and phytoavailability in Pb-Contaminated soils[J]. Environmental Pollution, 2021, 268: 115840.
[5] VAROL M. Dissolved heavy metal concentrations of the Kralkz, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey[J]. Chemosphere, 2013, 93(6): 954-962.
[6] LIN H Y, SUN T, XUE S F, et al. Heavy metal spatial variation, bioaccumulation, and risk assessment of Zostera japonica habitat in the Yellow River Estuary, China[J]. Science of the Total Environment, 2016, 541(15): 415-443.
[7] LI Y Z, ZHOU Q Q, REN B, et al. Trends and health risks of dissolved heavy metal pollution in global river and lake water from 1970 to 2017[J]. Reviews of Environmental Contamination and Toxicology, 2020, 251: 1-24.
[8] SUN X S, FAN D J, LIU M, et al. Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment[J]. Environmental Pollution, 2018, 241: 938-949.
[9] YI Y J, YANG Z F, ZHANG S H. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin[J]. Environmental Pollution, 2011, 159(10): 2575-2585.
[10] 王运, 邹勇军, 王鹤, 等. 江西信丰油山地区土壤硒及重金属元素地球化学特征[J]. 华东地质, 2019, 40(2): 152-160.
[11] 马超, 顾延生, 刘春根, 等. 鄱阳湖东南部地区全新统植硅体组合特征与古环境分析[J]. 华东地质, 2018, 39(3): 187-193.
[12] YIN S, FENG C H, Li Y Y, et al. Heavy metal pollution in the surface water of the Yangtze Estuary: A 5-year follow-up study [J]. Chemosphere,2015, 138: 718-725.
[13] 王丹. 长江上游(宜宾至泸州段)毒害污染物分布特征及风险评价 [D]. 邯郸:河北工程大学, 2016.
[14] GAO Q, LI Y, CHENG Q Y, et al. Analysis and assessment of the nutrients, biochemical indexes and heavy metals in the Three Gorges Reservoir, China, from 2008 to 2013 [J]. Water Research, 2016, 92: 262-274.
[15] 徐金英, 蔡永久, 赵中华, 等. 长江干流滨江水体As空间梯度变化与健康风险评价 [J]. 长江流域资源与环境, 2019, 28(11): 175-181.
[16] ZHANG Z X, LU Y, LI H P, et al. Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China [J]. Science of the Total Environment, 2018, 645: 235-243.
[17] MULLER B, BERG M, ZHI P Y, et al. How polluted is the Yangtze river? Water quality downstream from the Three Gorges Dam [J]. Science of the Total Environment. 2008, 402(2/3): 232-247.
[18] GENG J J, WANG Y P, LUO H J. Distribution, sources, and fluxes of heavy metals in the Pearl River Delta, South China [J]. Marine Pollution Bulletin, 2015, 101(2): 914-921.
[19] 方斌斌,于洋,姜伟立, 等. 太湖流域水体和沉积物重金属时空分布特征及潜在生态风险评价[J]. 生态与农村环境学报, 2017, 33(3): 215-224.
[20] ZHANG D W, WEI Y H, ZHANG L, et al. Distribution of heavy metals in water, suspended particulate matter and sediment of Poyang Lake, China [J]. Fresenius Environmental Bulletin, 2012, 21(7): 1910-1919.
[21] 中华人民共和国卫生部. GB5749—2006 生活饮用水卫生标准 [S]. 2006.
[22] WHO. Guidelines for drinking-water quality, 4th ed [S]. 2011.
[23] USEPA. Risk assessment guidance for Superfund volume I: Human health evaluation manual(Part F, Supplemental guidance for inhalation risk assessment)[S]. 2009.
[24] 刘耀驰, 高栗, 李志光,等. 湘江重金属污染现状、污染原因分析与对策探讨[J]. 环境保护科学,2010,36(4): 26-29.
[25] 曾凡萍, 刘澍, 肖化云, 等. 饶河入鄱阳湖口处沉积物中重金属的含量及空间变化[J]. 环境科技, 2010, 23(5): 51-54.
[26] WANG J W, LIU R M, WANG H T, et al. Identification and apportionment of hazardous elements in the sediments in the Yangtze River estuary [J]. Environmental Science and Pollution Research, 2015, 22(24): 20215-20225.
[27] JIAO N Z, ZHANG Y, ZENG Y H, et al. Ecological anomalies in the East China Sea: Impacts of the Three Gorges Dam? [J]. Water Research, 2007, 41(6): 1287-1293.
[28] ZHU H, BING H J, WU Y H, et al. The spatial and vertical distribution of heavy metal contamination in sediments of the Three Gorges Reservoir determined by anti-seasonal flow regulation [J]. Science of the Total Environment, 2019, 664(10): 79-88.
[29] 简敏菲,杨叶萍,余厚平,等. 德兴铜矿区优势物种苎麻(Boehmeria nivea)对重金属的富集与积累特性[J]. 生态与农村环境学报, 2016, 32(3): 486-491.
[30] NAZEER S, HASHMI M Z, MALIK R N. Heavy metals distribution, risk assessment and water quality characterization by water quality index of the River Soan, Pakistan [J]. Ecological Indicators, 2014, 43: 262-270.
[31] YIN J J, LIU Q, WANG L, et al. The distribution and risk assessment of heavy metals in water, sediments, and fish of Chaohu Lake, China [J]. Environmental Earth Sciences, 2018, 77(3): 1-12.
[32] PANDEY L K, PARK J, SON D H, et al. Assessment of metal contamination in water and sediments from major rivers in South Korea from 2008 to 2015 [J]. Science of the Total Environment, 2019, 651: 323-333.
[33] 水利部长江水利委员会. 长江泥沙公报 [M]. 武汉:长江出版社, 2018.
[34] HUANG J C, ZHANG Y J, ARHONDITSIS G B, et al. How successful are the restoration efforts of China’s lakes and reservoirs? [J]. Environment International, 2019, 123: 96-103.
[35] LI S Y, ZHANG Q F. Spatial characterization of dissolved trace elements and heavy metals in the upper Han River(China)using multivariate statistical techniques [J]. Journal of Hazardous Materials, 2010, 176(1/3): 579-588.
[36] FRANCO-URIA A, LOPEZ-MATEO C, ROCA E, et al. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain [J]. Journal of Hazardous Materials, 2009, 165(1/3): 1008-1015.
[37] CHEN B, LIU J, HU L M, et al. Spatio-temporal distribution and sources of Pb identified by stable isotopic ratios in sediments from the Yangtze River Estuary and adjacent areas [J]. Science of the Total Environment,2017, 580: 936-945.
[38] 王岚. 长江水系及流域典型土壤中Cd等重金属元素的环境地球化学行为研究[D]. 北京:中国地质科学院, 2010.
[39] GIRI S, SINGH A K. Risk assessment, statistical source identification and seasonal fluctuation of dissolved metals in the Subarnarekha River, India [J]. Journal of Hazardous Materials, 2014, 265: 305-314.
[40] XIAO J, WANG L Q, DENG L, et al. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau [J]. Science of the Total Environment, 2019, 650: 2004-2012.
[41] 张莉, 祁士华, 瞿程凯, 等. 福建九龙江流域重金属分布来源及健康风险评价[J].中国环境科学, 2014, 34(8): 2133-2139.
[42] NAWAB J, KHAN S, WANG X P. Ecological and health risk assessment of potentially toxic elements in the major rivers of Pakistan: General population vs. Fishermen [J]. Chemosphere, 2018, 202: 154-164.
[43] ZHAO M M, CHEN Y P, XUE L G, et al. Greater health risk in wet season than in dry season in the Yellow River of the Lanzhou region [J]. Science of the Total Environment, 2018, 644: 873-883.
[44] ZHANG H, JIANG Y H, WANG M, et al. Spatial characterization, risk assessment, and statistical source identification of the dissolved trace elements in the Ganjiang River-feeding tributary of the Poyang Lake, China [J]. Environmental Science and Pollution Research, 2017, 24(3): 2890-2903.

相似文献/References:

[1]顾 佳,闫玉茹,平利姣.南通近海潮滩表层沉积物重金属含量特征与生态风险评价[J].华东地质,2017,38(02):155.[doi:10.16788/j.hddz.32-1865/P.2017.02.010]
 GU Jia,YAN Yu-ru,PING Li-jiao.Characteristics and ecological risk assessment of heavy metals in tidal flat surface sediments of the Nantong coastal zone[J].East China Geology,2017,38(01):155.[doi:10.16788/j.hddz.32-1865/P.2017.02.010]
[2]郑雄伟,倪 倩,郑国权,等.洪湖市峰口—万全地区土壤重金属和硒元素的形态组成特征[J].华东地质,2018,39(04):311.[doi:10.16788/j.hddz.32-1865/P.2018.04.009]
 ZHENG Xiong-wei,NI Qian,ZHENG Guo-quan,et al.Occurrence features of heavy metals and selenium in soil of the Fengkou-Wanquan area, Honghu[J].East China Geology,2018,39(01):311.[doi:10.16788/j.hddz.32-1865/P.2018.04.009]
[3]刘 强,项立辉,程 瑜,等.南京东郊沿江地区农用地土壤重金属分布特征及风险性评价[J].华东地质,2021,42(01):37.[doi:10.16788/j.hddz.32-1865/P.2021.01.005]
 LIU Qiang,XIANG Lihui,CHENG Yu,et al.Distribution characteristics and risk assessment of the heavy metals in agricultural land along the Yangtze River in the eastern suburbs of Nanjing City[J].East China Geology,2021,42(01):37.[doi:10.16788/j.hddz.32-1865/P.2021.01.005]

备注/Memo

备注/Memo:
*收稿日期:2020-11-04 修订日期:2021-01-05 责任编辑:谭桂丽
基金项目:国家自然科学基金(编号:41971147)、中国地质调查局 “长江经济带地质资源环境综合评价(编号:DD20190260)”项目联合资助。
第一作者简介:徐金英,1991年生,女,助理研究员,主要从事湿地污染生态学研究。Email:xujy2020@ncu.edu.cn。
通信作者简介:王晓龙,1977年生,男,副研究员,主要从事湿地生态学研究。Email:wangxl@niglas.ac.cn。
更新日期/Last Update: 2021-03-28