[1]贺振宇,颜丽丽,褚平利,等.浙东长屿破火山的典型识别特征[J].华东地质,2022,43(04):448-459.[doi:10.16788/j.hddz.32-1865/P.2022.04.005]
 HE Zhenyu,YAN Lili,CHU Pingli,et al.Typical recognition features of the Changyu caldera in the eastern Zhejiang Province[J].East China Geology,2022,43(04):448-459.[doi:10.16788/j.hddz.32-1865/P.2022.04.005]
点击复制

浙东长屿破火山的典型识别特征()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
43
期数:
2022年04期
页码:
448-459
栏目:
火山岩填图技术与古火山解剖
出版日期:
2022-12-23

文章信息/Info

Title:
Typical recognition features of the Changyu caldera in the eastern Zhejiang Province
作者:
贺振宇1 颜丽丽2 褚平利3 张进4
1. 北京科技大学土木与资源工程学院, 北京 100083;
2. 中国地震局地质研究所, 北京 100029;
3. 中国地质调查局南京地质调查中心, 江苏 南京 210016;
4. 中国地质科学院地质研究所, 北京 100037
Author(s):
HE Zhenyu1 YAN Lili2 CHU Pingli3 ZHANG Jin4
1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2. Institute of Geology, China Earthquake Administration, Beijing 100029, China;
3. Nanjing Center, China Geological Survey, Nanjing 210016, Jiangsu, China;
4. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
关键词:
破火山硅质火山活动地质填图长屿硐天中国东南沿海
Keywords:
calderassilicic volcanic activitygeological mappingChangyudongtiancoastal southeast China
分类号:
P588.14P52
DOI:
10.16788/j.hddz.32-1865/P.2022.04.005
摘要:
破火山在中国东南沿海白垩纪巨型硅质火山-侵入杂岩带中大量分布,其成因及相关的火山活动过程是理解中国东南部构造-岩浆与成矿作用的重要科学问题。破火山是近圆形的火山洼地,其形成与大量岩浆喷出的爆炸式火山碎屑流喷发伴随的岩浆房顶板塌陷有关。对于经历剥蚀的古老破火山,其内部岩石相对围岩来说更年轻,与围岩并列接触并有截然的界线,是识别破火山的重要依据。破火山一般经历多阶段的火山活动过程,包括塌陷前喷发、破火山形成喷发、破火山形成后喷发和破火山复活等,识别这些不同的火山喷发和岩浆活动阶段是理解破火山形成与演化的关键问题。浙东晚白垩世长屿火山具有典型的破火山识别特征:①火山岩呈直径约12 km的圆形分布,局部发育破火山内湖相沉积;②破火山南部第一阶段流纹质角砾熔结凝灰岩与较老的九里坪组富晶体火山岩在空间上并列,并以正断层带为界,九里坪组火山岩构成了长屿破火山的围岩和可能的基底;③长屿3个阶段的火山岩均主要分布在破火山内,具有典型的火山碎屑流相的岩相学特征,在垂向上依次叠置,反映了第一阶段火山活动导致了塌陷破火山的形成,第二阶段和第三阶段为破火山形成后喷发,喷发产物进一步填充破火山;④破火山内多处发育的流纹岩穹隆代表了破火山内部的多个火山岩浆通道。
Abstract:
Calderas are widely distributed in the huge Cretaceous silicic volcanic-plutonic complex belt along coastal area of Southeast China. Their genesis and related volcanic activity processes are important issues for understanding the tectono-magmatism and mineralization in SE China. Calderas are subcircular volcanic depressions. The formation of the caldera is associated with the collapse of the magma chamber roof following with large-volume pyroclastic-flows during explosive eruptions. The eroded caldera can be well identified by the juxtaposition of the intracaldera volcanic rocks at the same level as older surrounding rocks. The formation of caldera commonly undergoes multi-stage volcanic activity processes, including pre-caldera eruption, caldera-forming eruption, post-caldera eruption and caldera resurgence. Identifying the different eruption stages and magmatic activities are crucial for understanding the formation and evolution of calderas. The Changyu caldera from eastern Zhejiang, coastal SE China has typical recognition features, including: 1 The volcanic rocks are distributed as nearly circular geometry with a diameter of 12 km, and lake sedimentary rocks were locally developed within the caldera; 2 The rhyolitic lapilli welded tuff of the first unit juxtaposed against older crystal-rich volcanic rocks of Jiuliping Formation along the south margin of the caldera and they are bounded by normal fault zone. The Jiuliping Formation constitutes the wall and the possible basement of Changyu caldera; 3 The first, second and third tuff units of Changyu caldera are mainly distributed within the caldera, showing typical petrological characteristics of pyroclastic-flow facies. They are vertically distributed from base to top, suggesting that the eruption of the first unit led to the formation of the collapse caldera, while the second and the third volcanic units were formed by post-caldera eruptions, which further filled the caldera; 4 Rhyolite domes were developed in several places within the caldera, representing volcanic magma conduits of the caldera.

参考文献/References:

[1] JAHN B M. Mesozoic thermal events in southeast China[J]. Nature, 1974, 248:480-483.
[2] ZHOU X, SUN T, SHEN W, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in south China:A response to tectonic evolution[J]. Episodes, 2006, 29:26-33.
[3] HE Z Y, XU X S. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China:Response to the geodynamics of paleo-Pacific plate subduction[J]. Chemical Geology, 2012, 328:208-221.
[4] YAN L L, HE Z Y, JAHN B M, et al. Formation of the Yandangshan volcanic-plutonic complex (SE China) by melt extraction and crystal accumulation[J]. Lithos, 2016, 266/267:287-308.
[5] 谢家莹, 陶奎元, 尹家衡, 等.中国东南大陆中生代火山地质及火山-侵入杂岩[M]. 北京:地质出版社, 1996.XIE J Y, TAO K Y, YIN J H, et al. Mesozoic volcanic geology and volcano-intrusive complexes of southeast China continent[M]. Beijing:Geological Publishing House, 1996.
[6] XING G, LI J, DUAN Z, et al. Mesozoic-Cenozoic volcanic cycle and volcanic reservoirs in east China[J]. Journal of Earth Science, 2021, 32:742-765.
[7] CHEN C H, LEE C Y, LU H Y, et al. Generation of Late Cretaceous silicic rocks in SE China:Age, major element and numerical simulation constraints[J]. Journal of Asian Earth Sciences, 2008, 31:479-498.
[8] LIU L, XU X, ZOU H. Episodic eruptions of the Late Mesozoic volcanic sequences in southeastern Zhejiang, SE China:Petrogenesis and implications for the geodynamics of paleo-Pacific subduction[J]. Lithos, 2012, 154:166-180.
[9] 王加恩, 刘远栋, 汪建国, 等. 浙江丽水地区磨石山群火山岩时代归属[J]. 华东地质,2016, 37(3):157-165.WANG J E, LIU Y D, WANG J G, et al. Age assignment of the Moshishan Group volcanic rocks in the Lishui area, ZhejiangProvince[J]. East China Geology, 2016, 37(3):157-165.
[10] ZHANG J H, YANG J H, CHEN J Y, et al. Genesis of late Early Cretaceous high-silica rhyolites in eastern Zhejiang Province, southeast China:A crystal mush origin with mantle input[J]. Lithos, 2018, 296/299:482-495.
[11] ZHAO L, GUO F, ZHANG X, et al. Cretaceous crustal melting records of tectonic transition from subduction to slab rollback of the Paleo-Pacific Plate in SE China[J]. Lithos, 2021, 384:105985.
[12] XU X, ZHAO K, HE Z, et al. Cretaceous volcanic-plutonic magmatism in SE China and a genetic model[J]. Lithos, 2021, 402/403:105728.
[13] YAN L, HE Z, BEIER C, et al. Geochemical constraints on the link between volcanism and plutonism at the Yunshan caldera complex, SE China[J]. Contributions to Mineralogy and Petrology, 2018, 173(1):4.
[14] COLE J W, MILNER D M, SPINKS K D. Calderas and caldera structures:a review[J]. Earth Science Reviews, 2005, 69(1):1-26.
[15] GEYER A, MARTí J. The new worldwide collapse caldera database (CCDB):A tool for studying and understanding caldera processes[J]. Journal of Volcanology and Geothermal Research, 2008, 175(3):334-354.
[16] BRANNEY M, ACOCELLA V. Calderas[M]//HARALDUR S. The encyclopedia of volcanoes. Academic Press, 2015:299-315.
[17] LIPMAN P W. The roots of ash flow calderas in western North America:windows into the tops of granitic batholiths[J]. Journal of Geophysical Research:Solid Earth, 1984, 89(B10):8801-8841.
[18] LIPMAN P W. Subsidence of ash-flow calderas:relation to caldera size and magma-chamber geometry[J]. Bulletin of Volcanology, 1997, 59(3):198-218.
[19] KENNEDY B M, HOLOHAN E P, STIX J, et al. Magma plumbing beneath collapse caldera volcanic systems[J]. Earth Science Reviews, 2018, 177:404-424.
[20] GELMAN S E, DEERING C D, BACHMANN O, et al. Identifying the crystal graveyards remaining after large silicic eruptions[J]. Earth and Planetary Science Letters, 2014, 403:299-306.
[21] 贺振宇, 颜丽丽. 锆石微量元素地球化学对硅质火山岩浆系统的制约[J]. 岩石矿物学杂志, 2021, 40(5):939-951.HE Z Y, YAN L L. Zircon trace element geochemistry constrains on the silicic volcanic system[J]. Acta Petrologica et Mineralogica, 2021, 40(5):939-951.
[22] 王德滋, 周金城, 邱检生, 等. 中国东南部晚中生代花岗质火山-侵入杂岩特征与成因[J]. 高校地质学报, 2000, 6(4):487-498.WANG D Z, ZHOU J C, QIU J S, et al. Characteristics and petrogenesis of Late Mesozoic granitic volcanic-intrusive complexes in Southeastern China[J]. Geological Journal of China Universities, 2000, 6(4):487-498.
[23] GOODAY R J, BROWN D J, GOODENOUGH K M, et al. A proximal record of caldera-forming eruptions:the stratigraphy, eruptive history and collapse of the Palaeogene Arran caldera, western Scotland[J]. Bulletin of Volcanology, 2018, 80(9):70.
[24] 俞云文. 浙江芙蓉山破火山口构造特征及火山-侵入杂岩的成岩物质来源[J]. 中国区域地质, 1993, 12(1):35-44.YU Y W. The features of the mount Furong caldera structure in Zhejiang-Material source of the intrusive complex[J]. Regional Geology of China, 1993, 12(1):35-44.
[25] MCBIRNEY A R. An historical note on the origin of calderas[J]. Journal of Volcanology and Geothermal Research, 1990, 42(3):303-306.
[26] GUDMUNDSSON A. Formation of collapse calderas[J]. Geology, 1988, 16(9):808-810.
[27] GRAY J P, MONAGHAN J J. Numerical modelling of stress fields and fracture around magma chambers[J]. Journal of Volcanology and Geothermal Research, 2004, 135(3):259-283.
[28] ACOCELLA V. Understanding caldera structure and development:An overview of analogue models compared to natural calderas[J]. Earth Science Reviews, 2007, 85(3):125-160.
[29] BACHMANN O, HUBER C. Silicic magma reservoirs in the Earth’s crust[J]. American Mineralogist, 2016, 101(11):2377-2404.
[30] BOUVET DE MAISONNEUVE C, FORNI F, BACHMANN O. Magma reservoir evolution during the build up to and recovery from caldera-forming eruptions-A generalizable model?[J]. Earth-Science Reviews, 2021, 218:103684.
[31] LIPMAN P W. Incremental assembly and prolonged consolidation of Cordilleran magma chambers:Evidence from the Southern Rocky Mountain volcanic field[J]. Geosphere, 2007, 3(1):42-70.
[32] CHRISTIANSEN R L, LOWENSTERN J B, SMITH R B, et al. Preliminary assessment of volcanic and hydrothermal hazards in Yellowstone national park and vicinity[R]. US Geological Survey open-file report 2007-1071:2007.
[33] STELTEN M E, COOPER K M, VAZQUEZ J A, et al. Mechanisms and timescales of generating eruptible rhyolitic magmas at Yellowstone Caldera from zircon and sanidine geochronology and geochemistry[J]. Journal of Petrology, 2015, 56(8):1607-1641.
[34] WOLFF J A, GARDNER J N. Is the Valles caldera entering a new cycle of activity?[J]. Geology, 1995, 23(5):411-414.
[35] KENNEDY B, WILCOCK J, STIX J. Caldera resurgence during magma replenishment and rejuvenation at Valles and Lake City calderas[J]. Bulletin of Volcanology, 2012, 74(8):1833-1847.
[36] HILDRETH W. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters:Several contiguous but discrete systems[J]. Journal of Volcanology and Geothermal Research, 2004, 136(3/4):169-198.
[37] 高丽, 洪文涛, 杨祝良, 等. 浙东小雄破火山晚白垩世火山-侵入杂岩成因及岩浆演化[J]. 华东地质, 2019, 40(3):161-169.GAO L, HONG W T, YANG Z L, et al. Petrogenesis and magmatic process of Late Cretaceous volcano-intrusive complex from Xiaoxiong Caldrea, Eastern Zhejiang Province[J]. East China Geology, 2019, 40(3):161-169.
[38] 颜丽丽, 贺振宇.岩浆补给作用对硅质火山岩浆系统演化的制约[J]. 地质学报, 2022, 96(5):1697-1710.YAN L L, HE Z Y. Influence of magma recharge on the evolution of silicic volcanic system[J]. Acta Geologica Sinica, 2022, 96(5):1697-1710.
[39] CORRADINO M, PEPE F, SACCHI M, et al. Resurgent uplift at large calderas and relationship to caldera-forming faults and the magma reservoir:New insights from the Neapolitan Yellow Tuff caldera (Italy)[J]. Journal of Volcanology and Geothermal Research, 2021, 411:107183.
[40] PHILLIPS E H, GOFF F, KYLE P R, et al. The 40Ar/39Ar age constraints on the duration of resurgence at the Valles caldera, New Mexico[J]. Journal of Geophysical Research:Solid Earth, 2007, 112:B08201.
[41] HULEN J B, NIELSON D L, GOFF F, et al. Molybdenum mineralization in an active geothermal system, Valles caldera, New Mexico[J]. Geology, 1987, 15(8):748-752.
[42] STIX J, KENNEDY B, HANNINGTON M, et al. Caldera-forming processes and the origin of submarine volcanogenic massive sulfide deposits[J]. Geology, 2003, 31(4):375-378.
[43] GALETTO F, ACOCELLA V, CARICCHI L. Caldera resurgence driven by magma viscosity contrasts[J]. Nature Communications, 2017, 8(1):1750.
[44] BACHMANN O, DEERING C D, RUPRECHT J S, et al. Evolution of silicic magmas in the Kos-Nisyros volcanic center, Greece:A petrological cycle associated with caldera collapse[J]. Contributions to Mineralogy and Petrology, 2012, 163(1):151-166.
[45] FORNI F, DEGRUYTER W, BACHMANN O, et al. Long-term magmatic evolution reveals the beginning of a new caldera cycle at Campi Flegrei[J]. Science advances, 2018, 4(11):9401.
[46] 褚平利, 邢光福, 洪文涛,等. 陆相火山岩区填图方法的实践——以嵊州新生代玄武岩为例[J]. 地质通报, 2017, 36(11):2036-2044.CHU P L, XING G F, HONG W T, et al. Practice of the mapping method in continental volcanic rocks outcrop area:A case study of Cenozoic basalt in Shengzhou, Zhejiang Province[J]. Geological Bulletin of China, 2017, 36(11):2036-2044.
[47] 祝介旺, 李丽慧, 傅燕, 等. 温岭大型古地下采石场长屿硐天凌霄硐洞室群工程地质条件评价[J]. 工程地质学报, 2014, 22(4):772-778.ZHU J W, LI L H, FU Y, et al. Evaluation on engineering geological conditions of Lingxiao caverns among Changyudongtian large ancient underground quarry at Wenling, Zhejiang province[J]. Journal of Engineering Geology, 2014, 22(4):772-778.
[48] 贺振宇, 颜丽丽, 褚平利, 等. 中国东南沿海晚白垩世长屿火山的活动过程与古环境意义[J]. 岩石学报, 2022, 38(5):1419-1442.HE Z Y, YAN L L, CHU P L, et al. Volcanological evolution and paleoenvironment of the Late Cretaceous Changyu volcano in the coastal SE China[J]. Acta Petrologica Sinica, 2002, 38(5):1419-1442.

备注/Memo

备注/Memo:
收稿日期:2022-05-23;改回日期:2022-10-08。
基金项目:国家自然科学基金"酸性火山岩的成分分层与地壳岩浆系统演化(编号:42172070)"项目资助。
作者简介:贺振宇,1976年生,男,教授,博士,博士生导师,主要从事火成岩岩石学研究工作。Email:zhenyuhe@ustb.edu.cn。
更新日期/Last Update: 1900-01-01