[1]肖 凡,班宜忠,周 延,等.武夷山成矿带龙岩地区晚石炭世热水成因硅质岩的发现及其地质意义[J].华东地质,2018,39(04):290-298.[doi:10.16788/j.hddz.32-1865/P.2018.04.006]
 XIAO Fan,BAN Yi-zhong,ZHOU Yan,et al.The discovery of Late Carboniferous hydrothermal cherts in the Longyan area of the Wuyishan metallogenic belt and its geological implications[J].East China Geology,2018,39(04):290-298.[doi:10.16788/j.hddz.32-1865/P.2018.04.006]
点击复制

武夷山成矿带龙岩地区晚石炭世热水成因硅质岩的发现及其地质意义()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
39
期数:
2018年04期
页码:
290-298
栏目:
矿床地质
出版日期:
2018-12-01

文章信息/Info

Title:
The discovery of Late Carboniferous hydrothermal cherts in the Longyan area of the Wuyishan metallogenic belt and its geological implications
文章编号:
2096-1871(2018)04-290-09
作者:
肖 凡12班宜忠1周 延1康丛轩1陈世忠1
(1. 中国地质调查局南京地质调查中心,南京 210016; 2. 南京大学地球科学与工程学院,南京 210023)
Author(s):
XIAO Fan12 BAN Yi-zhong1 ZHOU Yan1 KANG Cong-xuan1 CHEN Shi-zhong1
(1. Nanjing Center, China Geological Survey, Nanjing 210016, China; 2. School of Earth Science and Engineering, Nanjing University, Nanjing 210023, China)
关键词:
热水沉积作用 硅质岩 经畲组 龙岩地区 武夷山成矿带
Keywords:
hydrothermal sedimentary cherts Jingshe Formation Longyan area Wuyishan metallogenic belt
分类号:
P588.24.4
DOI:
10.16788/j.hddz.32-1865/P.2018.04.006
文献标志码:
A
摘要:
武夷山成矿带发育多期海相火山成矿建造,是近些年矿产勘查的重要对象。基于该成矿带龙岩地区晚石炭世经畲组铅锌矿化角砾岩层的宏观地质特征,对其中硅质岩进行了岩相学和岩石地球化学研究,探讨铅锌来源与富集机制等问题。研究发现,硅质岩SiO2和Al2O3呈负相关,Fe2O3/FeO大多数<1,并具有Eu正异常特征,说明硅质岩为热水沉积成因。硅质岩Al2O3/(Al2O3+TFe2O3)值为0.73~0.80(平均值为0.77)、Al2O3/(Al2O3+TFe2O3+MnO)值为0.60~0.65(平均值为0.62),LaN/CeN为0.86~2.49(平均值为1.52),表明硅质岩形成时受到了陆源物质影响。龙岩地区晚石炭世经畲组铅锌矿化角砾岩层是海底热水喷口塌陷作用的产物,对指导该区铅锌矿找矿工作具有重要意义。
Abstract:
Multiple submarine volcanic mineralization formations developed in the Wuyishan metallogenic belt have received much concern in recent years’ mineral exploration. Based on the geological characteristics of the lead-zinc mineralized breccia layer of Late Carboniferous Jingshe Formation in the Longyan area, petrographical and lithogeochemical studies of cherts from the breccia layer have been carried out in order to understand element(Zn and Pb)sources and enrichment mechanism. The research suggests that cherts have negative correlation between SiO2 and Al2O3, with most Fe2O3/FeO ratios less than 1 and positive Eu anomaly, which indicates a hydrothermal sedimentary genesis for cherts. The cherts have Al2O3/(Al2O3+TFe2O3)values of 0.73~0.80(averaging 0.77), Al2O3/(Al2O3+TFe2O3+MnO)of 0.60~0.65(averaging 0.62), and LaN/CeN of 0.86~2.49(averaging 1.52), which show that the cherts were influenced by continential materials. Finally, it can be concluded that the lead-zinc mineralized breccia layer of Late Carboniferous Jingshe Formation was the product of hydrothermal vent collapse on the seafloor. This study has significant implications for guiding mineral exploration in the Wuyishan metallogenic belt.

参考文献/References:

[1] Kametaka M, Takebe M, Nagai H, et al. Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform,China; the Gufeng Formation:a continental shelf radiolarian chert[J].Sedimentary Geology, 2005,174(3/4): 197-222.
[2] 田云涛,冯庆来,李琴.桂西南柳桥地区上二叠统大隆组层状硅质岩成因和沉积环境[J].沉积学报,2007,25(5):671-677.
[3] 杨水源,姚静.安徽巢湖平顶山中二叠统孤峰组硅质岩的地球化学特征及成因[J].高校地质学报, 2008,14(1):39-48.
[4] 刘新宇,颜佳新.华南地区二叠纪栖霞组燧石结核成因研究及其地质意义[J].沉积学报,2007,25(5):730-736.
[5] 周延. 江西华齐铜多金属矿区含矿硅质岩的地球化学特征及成因探讨[J].资源调查与环境,2011,32(1):57-65.
[6] 周永章,何俊国,杨志军,等.华南热水沉积硅质岩建造及其成矿效应[J].地学前缘,2004,11(2):373-377.
[7] 邱振,王清晨.广西来宾中上二叠统硅质岩海底热液成因的地球化学证据[J].中国科学:地球科学, 2011,41(5):725-737.
[8] 杨玉卿,冯增昭.华南下二叠统层状硅岩的形成及意义[J].岩石学报,1997,13(1):111-120.
[9] 王忠诚,吴浩若,邝国敦.广西晚古生代硅岩的地球化学及其形成的大地构造环境[J].岩石学报, 1995,11(4):449-455.
[10] Ledevin M, Arndt N T, Simionovici A. Archean cherts: field,petrographic and geochemical criteria to determine their origin[C].EGU General Assembly, 2013,15:4840.
[11] Marshall A O, Jehli(ˇoverc)ka J,Rouzaud J N, et al. Multiple generations of carbonaceous material deposited in Apex chert by basin-scale pervasive hydrothermal fluid flow[J].Gondwana Research, 2014,25(1):284-289.
[12] Kurihara T,Tsukada K,Otoh S, et al. Upper Silurian and Devonian pelagic deep-water radiolarian chert from the Khangai-Khentei belt of Central Mongolia:evidence for middle Paleozoic subduction-accretion activity in the central Asian orogenic belt[J]. Journal of Asian Earth Sciences, 2009,34(2):209-225.
[13] Baldwin G J,Thurston P C,Kamber R S. High-precision rare earth element,nickel,and chromium chemistry of chert microbands pre-screened with in-situ analysis[J].Chemical Geology, 2011,285(1):133-143.
[14] Nishikane Y,Kaiho K,Henderson C M, et al. Guadalupian-Lopingian conodont and carbon isotope stratigraphies of a deep chert sequence in Japan[J].Palaeogeography, Palaeoclimatology,Palaeoecology,2014, 403(2): 16-29.
[15] 周永章,涂光帜, Edward H,等.粤西古水剖面震旦系顶部层状硅质岩的热水成因属性:岩石学和地球化学证据[J].沉积学报,1994,12(3):1-11.
[16] 周永章.丹池盆地热水成因硅岩的沉积地球化学特征[J].沉积学报,1990,8(3):75-83.
[17] 李胜荣,高振敏.华南下寒武统黑色岩系中的热水成因硅质岩[J].矿物学报,1996(4):416-422.
[18] 张宁,夏文臣.华南晚古生代硅质岩时空分布及再扩张残留海槽演化[J].地球科学:中国地质大学学报, 1998,23(5):480-486.
[19] 夏萍,张湖,王秀璋,等.粤西长坑金银矿区硅质岩的地质地球化学特征及成因探讨[J].地球化学, 1996(2):129-139.
[20] 孙建东,骆学全,张雪辉,等.江西省铅山县二叠纪海相火山岩锆石U-Pb年龄及Lu-Hf同位素组成[J].华东地质,2016,37(4):246-251.
[21] 毛建仁,陶奎元,谢芳贵,等.闽西南地区成岩成矿作用与构造环境[J].岩石矿物学杂志, 2001,20(3):329-336.
[22] 王果胜,马文璞,朱卫平.闽西南晚古生代—早三叠世沉积特征及其大地构造意义[J].成都理工大学学报:自然科学版, 2009,36(1):87-91.
[23] 王森,张达,吕良冀,等.闽西南晚古生代以来伸展构造演化:中基性岩墙群的年代学、地球化学制约[J].大地构造与成矿学, 2015,39(5): 889-902.
[24] 王尔康,刘聪.闽西南—粤东北晚古生代的火山作用[M]北京:冶金工业出版社, 1993:178-186.
[25] 张达,吴淦国,狄永军,等.闽西南中生代推覆构造对铁矿床控矿特征研究[J].矿物学报,2011(Z):128-129.
[26] 周珍琦.闽西南地区推覆构造特征[J].石油实验地质,2006,28(1):38-41.
[27] Adachi M,Yamamoto K,Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity[J].Sedimentary Geology, 1986,47(1/2):125-148.
[28] Yamamoto K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto terrances[J]. Sedimentary Geology,1987,52(1/2):65-108.
[29] Murray R W. Chemical criteria to identify the depositional environment of chert:general priciples and applications[J].Sedimentary Geology, 1994,90(3/4):213-232.
[30] 路远发.Geokit:一个用VBA构建的地球化学工具软件包[J].地球化学,2004,33(5):459-464.
[31] Baltuck M. Provenance and distribution of tethyan pelagic and hemipelagic siliceous sediments, pindos mountains,Greece[J]. Sedimentary Geology, 1982,31(1):63-88.
[32] Murray R W, Ten Brink M R B, Gerlach D C, et al. Rare earth,major, and trace elements in chert from the Franciscan complex and Monterey Group,California: Assessing REE sources to fine-grained marine sediments[J].Geochimica et Cosmochimica Acta,1991,55(7):1875-1895.
[33] Murray R W, Buchholtz M, Jones D, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale[J].Geology, 1990,18(3): 268-271.
[34] 燕长海,彭翼,刘国印,等.东秦岭二郎坪群热水沉积硅质岩的地球化学特征[J].地质通报, 2007,26(5):560-566.
[35] Michard A.Rare earth element systematics in hydrothermal fluids[J].Geochimica et Cosmochimica Acta, 1989,53(3):745-750.
[36] German C R, Klinkhammer G P, Edmond J M, et al. Hydrothermal scavening of rare earth elements in the ocean[J].Nature,1990,345(6275):516-518.
[37] Chen D Z, Qing H,Yan X, et al. Hydrothermal venting and basin evolution(Devonian, south China): Constraints from rare element geochemistry of chert[J]. Sedimentary Geology, 2006,183(3): 203-216.
[38] 福建地质矿产勘查局.福建省区域地质志[M].北京:地质出版社,1985.

备注/Memo

备注/Memo:
*收稿日期:2017-07-14 修订日期:2018-01-01 责任编辑:谭桂丽
基金项目:中国地质调查局“武夷山成矿带龙泉—上杭地区地质矿产调查(编号:DD20160037)”、 “中国矿产地质与成矿规律综合集成和服务(矿产地质志)(编号:DD20160346)”和科技部“深地资源勘查开采专项(编号:2016YFC0600210)”项目联合资助。
第一作者简介:肖凡,1987年生,男,助理研究员,主要从事矿产地质与区域成矿规律研究。
更新日期/Last Update: 2018-11-13