[1]杨晓勇,蔡逸涛,徐敏成.西环太平洋菲律宾群岛中酸性岩浆活动与斑岩型铜金成矿:兼论埃达克岩与斑岩型铜金成矿[J].华东地质,2021,42(03):247-259.[doi:10.16788/j.hddz.32-1865/P.2021.03.001]
 YANG Xiaoyong,CAI Yitao,XU Mincheng.Intermediate-acid magmatism and porphyry Cu-Au mineralization in the Philippine Islands, western Pacific Rim: on genesis of adakite and porphyry Cu-Au mineralization[J].East China Geology,2021,42(03):247-259.[doi:10.16788/j.hddz.32-1865/P.2021.03.001]
点击复制

西环太平洋菲律宾群岛中酸性岩浆活动与斑岩型铜金成矿:兼论埃达克岩与斑岩型铜金成矿()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
42
期数:
2021年03期
页码:
247-259
栏目:
基础地质
出版日期:
2021-10-20

文章信息/Info

Title:
Intermediate-acid magmatism and porphyry Cu-Au mineralization in the Philippine Islands, western Pacific Rim: on genesis of adakite and porphyry Cu-Au mineralization
作者:
杨晓勇1 蔡逸涛23 徐敏成23
1. 中国科学技术大学地球和空间科学学院, 安徽 合肥 230001;
2. 中国地质调查局南京地质调查中心, 江苏南 京 210016;
3. 环太平洋战略矿产资源联合研究中心, 江苏 南京 210016
Author(s):
YANG Xiaoyong1 CAI Yitao23 XU Mincheng23
1. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230001, Anhui, China;
2. Nanjing Center, China Geological Survey, Nanjing 210016, Jiangsu, China;
3. Joint Research Centre for Pacific Rim Strategic Mineral Resources, Nanjing 210016, Jiangsu, China
关键词:
菲律宾岛弧中酸性岩浆活动斑岩型铜金成矿区域成矿规律西太平洋板块构造演化
Keywords:
Philippine island arcintermediate-acid magmatic activityporphyry copper-gold mineralizationregional metallogenic regularitytectonic evolution of the western Pacific plate
分类号:
P612
DOI:
10.16788/j.hddz.32-1865/P.2021.03.001
摘要:
以菲律宾岛弧构造岩浆作用和斑岩型铜金成矿作用为例,以与板块俯冲相关的深部物质循环和斑岩型铜金成矿为研究对象,综述了铜金在弧岩浆中复杂的地球化学过程和行为。通过对中酸性岩浆活动与区域斑岩铜金成矿响应进行系统综述,根据以往对菲律宾群岛中新生代岛弧岩浆岩和斑岩型铜金成矿开展的地质-地球化学研究,提出有利于成矿的地球化学指标,探讨了西环太平洋菲律宾群岛中酸性岩浆活动对区域铜金等多金属矿床的贡献,总结区域成矿规律,建立成矿动力学模式。通过研究菲律宾群岛周缘中新生代板块俯冲洋壳重熔岩浆作用及矿床形成机理,进一步揭示板块俯冲过程中以流体为纽带的物质和能量交换及斑岩型铜金成矿效应。
Abstract:
Taking deep material circulation and porphyry copper-gold mineralizaion related to the subduction of the western Pacific plate as research objects, this study reviewed the complex geochemical process and behavior of copper-gold in arc magmas by focusing on the research of tectonic magmatism and porphyry copper-gold magmatism in Philippine island arc. According to systematic review on intermediate-acid magmatic activity and porphyry copper-gold mineralization in response to the constraints from the tectonic evolution of western Pacific plate, this paper conducted detailed geological-geochemical research on the key carrier of Mesozoic-Cenozoic island arc magmatic rocks and porphyry copper gold deposits, identified geochemical indicators conducive to mineralizaiton as well as explored its contribution to the forming of regional copper-gold polymetallic deposits, and finally summarized the regional metallogenic regularity and built metallogenic dynamics model. By studying the island arc magma originated from oceanic crust remelting and the formation mechanism of mineral deposits controlled by the subduction of Mesozoic and Cenozoic plates, this paper further explore some important issues of the oceanic crust and mantle in the process of plate subduction.

参考文献/References:

[1] KAMENETSKY V S, BINNS R A, GEMMELL J B, et al. Parental Basaltic Melts and Fluids in Eastern Manus Backarc Basin:Implications for Hydrothermal Mineralisation[J]. Earth and Planetary Science Letters, 2001, 184:685-702.
[2] KENT A J, PEATE D W, NEWMAN S, et al. Chlorine in Submarine Glasses From the Lau Basin:Seawater Contamination and Constraints On the Composition of Slab-Derived Fluids[J]. Earth and Planetary Science Letters, 2002, 202:361-377.
[3] HEINRICH C A, DRIESNER T, STEFáNSSON A, et al. Magmatic Vapor Contraction and the Transport of Gold From the Porphyry Environment to Epithermal Ore Deposits[J]. Geology, 2004, 32:761-764.
[4] HEINRICH C A, GUNTHER D, AUDéTAT A, et al. Metal Fractionation Between Magmatic Brine and Vapor, Determined by Microanalysis of Fluid Inclusions[J]. Geology, 1999, 27:755-758.
[5] SILLITOE R H. Characteristics and Controls of the Largest Porphyry Copper-Gold and Epithermal Gold Deposits in the Circum-Pacific Region[J]. Australian Journal of Earth Sciences, 1997, 44:373-388.
[6] SUN W, HUANG R, LI H, et al. Porphyry Deposits and Oxidized Magmas[J]. Ore Geology Reviews, 2015, 65:97-131.
[7] CHIARADIA M. Adakite-Like Magmas From Fractional Crystallization and Melting-Assimilation of Mafic Lower Crust (Eocene Macuchi Arc, Western Cordillera, Ecuador)[J]. Chemical Geology, 2009, 265:468-487.
[8] LIANG H, CAMPBELL I H, ALLEN C, et al. Zircon Ce4+/Ce3+Ratios and Ages for Yulong Ore-Bearing Porphyries in Eastern Tibet[J]. Mineralium Deposita, 2006, 41:152-159.
[9] BORISOVA O, SIDORCHUK A, PANIN A. Palaeohydrology of the Seim River Basin, Mid-Russian Upland, Based On Palaeochannel Morphology and Palynological Data[J]. Catena, 2006, 66:53-73.
[10] MUNGALL J E. Roasting the Mantle:Slab Melting and the Genesis of Major Au and Au-rich Cu Depo-sits[J]. Geology, 2002, 30:915-918.
[11] SAJONA F G, MAURY R C. Association of Adakites with Gold and Copper Mineralization in the Philip pines[J]. Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science, 1998, 326:27-34.
[12] THIéBLEMONT D, PASCUAL E, STEIN G. Magmatism in the Iberian Pyrite Belt:Petrological Constraints On a Metallogenic Model[J].Mineralium Deposita, 1997, 33:98-110.
[13] WEISSEL J K. Evidence for Eocene Oceanic Crust in the Celebes Basin[J]. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, 1980, 23:37-47.
[14] BRIAIS A, TAPPONNIER P, PATRIAT P, et al. The Tertiary Opening of the South China Sea and Other Extensional Basins of the Sunda Shelf:A Consequence of the Collision Between India and Asia[C]. Paris:International symposium on geodynamic evolution of Eastern Eurasian Margin, 1988:13-20.
[15] TAYLOR B, HAYES D E. Origin and History of the South China Sea Basin[J]. The tectonic and geologic evolution of Southeast Asian seas and islands, 1983, 27:23-56.
[16] RANGIN C. The Sulu Sea, a Back-Arc Basin Setting within a Neogene Collision Zone[J]. Tectonophysics, 1989, 161:119-141.
[17] HALL R. Reconstructing Cenozoic SE Asia[J]. Geological Society, 1996, 106:153-184.
[18] HALL R. Late Jurassic-Cenozoic Reconstructions of the Indonesian Region and the Indian Ocean[J]. Tectonophysics, 2012, 570:1-41.
[19] HALL R, FULLER M, ALI J R, et al. The Philippine Sea Plate:Magnetism and Reconstruc-tions[J]. Active margins and marginal basins of the Western Pacific, 1995, 88:371-404.
[20] AURELIO M A, PE? R E, TAGUIBAO K J L. Sculpting the Philippine Archipelago Since the Cretaceous through Rifting, Oceanic Spreading, Subduction, Obduction, Collision and Strike-Slip Faulting:Contribution to IGMA 5000[J]. Journal of Asian Earth Sciences, 2013, 72:102-107.
[21] DESCHAMPS A, LALLEMAND S. The West Philippine Basin:An Eocene to Early Oligocene Back Arc Basin Opened Between Two Opposed Subduction Zones[J]. Journal of Geophysical Research:Solid Earth, 2002, 107:1.
[22] YUMUL J R. Westward Younging Disposition of Philippine Ophiolites and its Implication for Arc Evolu-tion[J]. Island Arc, 2007, 16:306-317.
[23] YUMUL G P, DIMALANTA C B, MAGLAMBAYAN V B, et al. Tectonic Setting of a Composite Terrane:A Review of the Philippine Island Arc System[J]. Island Arc, 2008, 12:7.
[24] RANGIN C, JOLIVET L, PUBELLIER M. A Simple Model for the Tectonic Evolution of Southeast Asia and Indonesia Region for the Past 43 My[J]. Bulletin de la Société géologique de France, 1990, 6:889-905.
[25] FAURE M, MARCHADIER Y, RANGIN C. Pre-Eocene Synmetamorphic Structure in the Mindoro-Romblon-Palawan Area, West Philippines, and Implications for the History of Southeast Asia[J]. Tectonics, 1989, 8:963-979.
[26] WALIA M, KNITTEL U, SUZUKI S, et al. No Paleozoic Metamorphics in Palawan (The Philippines)? Evidence From Single Grain U-Pb Dating of Detrital Zircons[J]. Journal of Asian Earth Sciences, 2012, 52:134-145.
[27] OZAWA A, TAGAMI T, LISTANCO E L, et al. Initiation and Propagation of Subduction Along the Philippine Trench:Evidence From the Temporal and Spatial Distribution of Volcanoes[J]. Journal of Asian Earth Sciences, 2004, 23:105-111.
[28] CASTILLO P R, RIGBY S J, SOLIDUM R U. Origin of High Field Strength Element Enrichment in Volcanic Arcs:Geochemical Evidence From the Sulu Arc, Southern Philippines[J]. Lithos, 2007, 97:271-288.
[29] SUN W. Initiation and Evolution of the South China Sea:An Overview[J]. Acta Geochimica, 2016, 35:215-225.
[30] CASTILLO P R. An Overview of Adakite Petrogenesis[J]. Chinese science bulletin, 2006, 51:257-268.
[31] QUEBRAL R D, PUBELLIER M, RANGIN C. The Onset of Movement On the Philippine Fault in Eastern Mindanao:A Transition From a Collision to a Strike-Slip Environment[J]. Tectonics, 1996, 15:713-726.
[32] MOORES E M. Origin and Emplacement of Ophiolites[J]. Reviews of Geophysics, 1982, 20:735-760.
[33] PUBELLIER M, ALI J, MONNIER C. Cenozoic Plate Interaction of the Australia and Philippine Sea Plates:"Hit-And-Run" Tectonics[J]. Tectonophysics, 2003, 363:181-199.
[34] SAJONA F G, MAURY R C, PUBELLIER M, et al. Magmatic Source Enrichment by Slab-Derived Melts in a Young Post-Collision Setting, Central Mindanao (Philippines)[J]. Lithos, 2000, 54:173-206.
[35] YUMUL J R, DIMALANTA C B, TAMAYO J R, et al. Collision, Subduction and Accretion Events in the Philippines:A Synthesis[J]. Island Arc, 2003, 12:77-91.
[36] BELLON H, YUMUL J R. Mio-Pliocene Magmatism in the Baguio Mining District (Luzon, Philippines):Age Clues to its Geodynamic Setting[J]. Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science, 2000, 331:295-302.
[37] BELLON H, YUMUL J R. Miocene to Quaternary Adakites and Related Rocks in Western Philippine Arc Sequences[J]. Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science, 2001, 333:343-350.
[38] DEFANT M J, JACQUES D, MAURY R C, et al. Geochemistry and Tectonic Setting of the Luzon Arc, Philippines[J]. Geological Society of America Bulletin, 1989, 101:663-672.
[39] RAE A J, COOKE D R, PHILLIPS D, et al. The Nature of Magmatism at Palinpinon Geothermal Field, Negros Island, Philippines:Implications for Geothermal Activity and Regional Tectonics[J]. Journal of Volcanology and Geothermal Research, 2004, 129:321-342.
[40] PUBELLIER M, QUEBRAL R, AURELIO M, et al. Docking and Post-Docking Escape Tectonics in the Southern Philippines[J]. Geological Society, 1996, 106:511-523.
[41] PUBELLIER M, SPADEA P, POUCLET A, et al. Correlations of Tephras in Celebes and Sulu Sea Basins:Constraints On Geodynamics1[C].Proceedings of the Ocean Drilling Program:Scientific results,1991, 124:459-465.
[42] LALLEMAND S E, POPOFF M, CADET J P, et al. Genetic Relations Between the Central and Southern Philippine Trench and the Sangihe Trench[J]. Journal of Geophysical Research:Solid Earth, 1998, 103:933-950.
[43] IMAI A. Metallogenesis of Porphyry Cu Deposits of the Western Luzon Arc, Philippines:K-Ar Ages, SO3 Contents of Microphenocrystic Apatite and Significance of Intrusive Rocks[J]. Resource Geology, 2002, 52:147-161.
[44] BURTON C K. Observations On the Geology of the Porphyry Copper Sub-Province of Southwest Negros, Philippines[J]. Geological Society of Malaysia (GSM),1983,16:215-239.
[45] IMAI A, SUERTE L O, NISHIHARA S. Origin of Bornite Pods in Intrusive Rocks at the Kingking Porphyry Copper-Gold Deposit, Southeastern Mindanao, Philippines[J]. Resource Geology, 2009, 59:307-313.
[46] POLVE M, MAURY R C, JEGO S, et al. Temporal Geochemical Evolution of Neogene Magmatism in the Baguio Gold-Copper Mining District (Northern Luzon, Philippines)[J]. Resource Geology, 2007, 57:197-218.
[47] SHINOHARA H, HEDENQUIST J W. Constraints On Magma Degassing Beneath the Far Southeast Porphyry Cu-Au Deposit, Philippines[J]. Journal of Petrology, 1997, 38:1741-1752.
[48] SOLIDUM R U, CASTILLO P R, HAWKINS J W. Geochemistry of Lavas From Negros Arc, West Central Philippines:Insights Into the Contribution From the Subducting Slab[J]. Geochemistry Geophysics Geosystems, 2013,10(4):9008.
[49] SUERTE L O, IMAI A, NISHIHARA S. Geochemical Characteristics of Intrusive Rocks, Southeastern Mindanao, Philippines:Implication to Metallogenesis of Porphyry Copper-gold Deposits[J]. Resource Geology, 2009, 59:244-262.
[50] YANG T F, LEE T, CHEN C, et al. A Double Island Arc Between Taiwan and Luzon:Consequence of Ridge Subduction[J]. Tectonophysics, 1996, 258:85-101.
[51] 詹美珍,孙卫东,凌明星,等. 黄岩海山链俯冲与吕宋岛斑岩铜金成矿[J]. 岩石学报, 2015,31(7):2101-2114.
[52] COOKE D R, HOLLINGS P, WALSHE J L. Giant Porphyry Deposits:Characteristics, Distribution, and Tectonic Controls[J]. Economic Geology, 2005, 100:801-818.
[53] SAJONA F G, MAURY R C. Association of Adakites with Gold and Copper Mineralization in the Philip pines[J]. Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science, 1998, 326:27-34.
[54] OYARZUN R, MáRQUEZ A, LILLO J, et al. Giant Versus Small Porphyry Copper Deposits of Cenozoic Age in Northern Chile:Adakitic Versus Normal Calc-Alkaline Magmatism[J]. Mineralium Deposita, 2001, 36:794-798.
[55] WANG Q, WYMAN D A, XU J, et al. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China:Implications for Partial Melting and Delamination of Thickened Lower Crust[J]. Geochimica et Cosmochimica Acta, 2007, 71:2609-2636.
[56] WANG Q, WYMAN D A, XU J, et al. Petrogenesis of Cretaceous Adakitic and Shoshonitic Igneous Rocks in the Luzong Area, Anhui Province (Eastern China):Implications for Geodynamics and Cu-Au Mineralization[J]. Lithos, 2006, 89:424-446.
[57] MACPHERSON C G, DREHER S T, THIRLWALL M F. Adakites without Slab Melting:High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines[J]. Earth and Planetary Science Letters, 2006, 243:581-593.
[58] RICHARDS J P, KERRICH R. Special Paper:Adakite-Like Rocks:Their Diverse Origins and Questionable Role in Metallogenesis[J]. Economic Geology, 2007, 102:537-576.
[59] SUN W, LING M, CHUNG S, et al. Geochemical Constraints On Adakites of Different Origins and Copper Mineralization[J]. The Journal of Geology, 2012, 120(1):105-120.
[60] SUN W, DING X, HU Y, et al. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific[J]. Earth and Planetary Science Letters, 2007, 262:533-542.
[61] LEE C A, LUFFI P, CHIN E J, et al. Copper Systematics in Arc Magmas and Implications for Crust-Mantle Differentiation[J]. Science, 2012, 336:64-68.
[62] RICHARDS J P. High Sr/Y Arc Magmas and Porphyry Cu-Mo-Au Deposits:Just Add Water[J]. Economic Geology, 2011, 106:1075-1081.
[63] RICHARDS J P. Giant Ore Deposits Formed by Optimal Alignments and Combinations of Geological Processes[J]. Nature Geoscience, 2013, 6:911-916.
[64] MCDONOUGH W F, SUN S. The Composition of the Earth[J]. Chemical Geology, 1995, 120:223-253.
[65] RUDNICK R L, GAO S, HOLLAND H D,et al. Composition of the Continental Crust[J]. The Crust, 2003, 3:1-64.
[66] ONEILL H S C, MAVROGENES J A. The Sulfide Capacity and the Sulfur Content at Sulfide Saturation of Silicate Melts at 1400 C and 1 Bar[J]. Journal of Petrology, 2002, 43:1049-1087.
[67] COTTRELL E, KELLEY K A. The Oxidation State of Fe in MORB Glasses and the Oxygen Fugacity of the Upper Mantle[J]. Earth and Planetary Science Letters, 2011, 305:270-282.
[68] BALLARD J R, PALIN M J, CAMPBELL I H. Relative Oxidation States of Magmas Inferred From Ce (IV)/Ce (III) in Zircon:Application to Porphyry Copper Deposits of Northern Chile[J]. Contributions to Mineralogy and Petrology, 2002, 144:347-364.
[69] CHIARADIA M. Copper Enrichment in Arc Magmas Controlled by Overriding Plate Thickness[J]. Nature Geoscience, 2014, 7:43-46.
[70] DING S, DASGUPTA R. The Fate of Sulfide During Decompression Melting of Peridotite-Implications for Sulfur Inventory of the MORB-source Depleted Upper Mantle[J]. Earth and Planetary Science Letters, 2017, 459:183-195.
[71] KELLEY K A, COTTRELL E. Water and the Oxidation State of Subduction Zone Magmas[J]. Science, 2009, 325:605-607.
[72] AEOLUS LEE C, LEEMAN W P, CANIL D, et al. Similar V/Sc Systematics in MORB and Arc Basalts:Implications for the Oxygen Fugacities of their Mantle Source Regions[J]. Journal of Petrology, 2005, 46:2313-2336.
[73] COX D, WATT S F, JENNER F E, et al. Chalcophile Element Processing Beneath a Continental Arc Stratovolcano[J]. Earth and Planetary Science Letters, 2019, 522:1-11.
[74] MATJUSCHKIN V, BLUNDY J D, BROOKER R A. The Effect of Pressure On Sulphur Speciation in Mid-To Deep-Crustal Arc Magmas and Implications for the Formation of Porphyry Copper Deposits[J]. Contributions to Mineralogy and Petrology, 2016, 171:1-25.
[75] LI C, RIPLEY E M. Empirical Equations to Predict the Sulfur Content of Mafic Magmas at Sulfide Saturation and Applications to Magmatic Sulfide Depo-sits[J]. Mineralium Deposita, 2005, 40:218-230.
[76] GARWIN S, HALL R, WATANABE, Y. Tectonic Setting, Geology, and Gold and Copper Mineralization in Cenozoic Magmatic Arcs of Southeast Asia and the West Pacific[J]. Economic Geology 100th anniversary volume, 2005, 891:930.
[77] SILLITOE R H, GAPPE I M. Philippine Porphyry Copper Deposits:Geologic Settings and Characteris tics[R]. CCOP Technical Report, 1984.
[78] HOLLINGS P, COOKE D R, WATERS P J, et al. Igneous Geochemistry of Mineralized Rocks of the Baguio District, Philippines:Implications for Tectonic Evolution and the Genesis of Porphyry-Style Mineralization[J]. Economic Geology, 2011, 106:1317-1333.
[79] JEGO S, MAURY R C, POLV?M, et al. Geochemistry of Adakites From the Philippines:Constraints On their Origins[J]. Resource Geology, 2005, 55:163-188.
[80] DENG J, YANG X, QI H, et al. Early Cretaceous high-Mg Adakites Associated with Cu-Au Mineralization in the Cebu Island, Central Philippines:Implication for Partial Melting of the paleo-Pacific Plate[J]. Ore Geology Reviews, 2017, 88:251-269.
[81] DENG J, YANG X, QI H, et al. Early Cretaceous Adakite From the Atlas Porphyry Cu-Au Deposit in Cebu Island, Central Philippines:Partial Melting of Subducted Oceanic Crust[J]. Ore Geology Reviews, 2019, 110:102937.
[82] DEFANT, M J, DRUMMOND, M S. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere[J]. Nature, 1990, 347:662-665.
[83] MARTIN H, SMITHIES R H, RAPP R, et al. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and some Implications for Crustal Evolution[J]. Lithos, 2005, 79:1-24.
[84] WATERS P J, COOKE D R, GONZALES R I, et al. Porphyry and Epithermal Deposits and 40Ar/39Ar Geochronology of the Baguio District, Philippines[J]. Economic Geology, 2011, 106:1335-1363.
[85] YANG T F, LEE T, CHEN C, et al. A Double Island Arc Between Taiwan and Luzon:Consequence of Ridge Subduction[J]. Tectonophysics, 1996, 258:85-101.
[86] ZHAN M Z, SUN W D, LING M X, et al. Huangyan Ridge Subduction and Formation of Porphyry Cu-Au Deposits in Luzon[J]. Acta Petrologica Sinica., 2015, 31:2101-2114.
[87] YUMUL G P, DIMALANTA C, BELLON H, et al. Adakitic Lavas in the Central Luzon Back-Arc Region, Philippines:Lower Crust Partial Melting Products?[J]. Island Arc, 2000, 9:499-512.
[88] ROHRLACH B D, LOUCKS R R. Super Porphyry Copper and Gold Deposits:A Global Perspective[J].CCOP Tech, 1984, 14:89.
[89] CASTILLO P R, JANNEY P E, SOLIDUM R U. Petrology and Geochemistry of Camiguin Island, Southern Philippines:Insights to the Source of Adakites and Other Lavas in a Complex Arc Set-ting[J]. Contributions to Mineralogy and Petrology, 1999, 134:33-51.
[90] ARRIBAS J R, A, HEDENQUIST J W, ITAYA T, et al. Contemporaneous Formation of Adjacent Porphyry and Epithermal Cu-Au Deposits Over 300 Ka in Northern Luzon, Philippines[J]. Geology, 1995, 23:337-340.
[91] HEDENQUIST J W, ARRIBAS A, REYNOLDS T J. Evolution of an Intrusion-Centered Hydrothermal System; Far Southeast-Lepanto Porphyry and Epithermal Cu-Au Deposits, Philippines[J]. Economic Geology, 1998, 93:373-404.
[92] YUMUL G P. Varying Mantle Sources of Supra-Subduction Zone Ophiolites:REE Evidence From the Zambales Ophiolite Complex, Luzon, Philippines[J]. Tectonophysics, 1996, 262:243-262.
[93] PAYOT B D, JEGO S, MAURY R C, et al. The Oceanic Substratum of Northern Luzon:Evidence From Xenoliths within Monglo Adakite (The Philippines)[J]. Island Arc, 2007, 16:276-290.
[94] WOLFE J A, JA W. Philippine Geochronology[J].Journal of the Geological Society of the Philippines,1981,35(1):1-30.
[95] BAUTISTA B C, BAUTISTA M L P, OIKE K, et al. A New Insight On the Geometry of Subducting Slabs in Northern Luzon, Philippines[J]. Tectonophysics, 2001, 339:279-310.
[96] MIDDLETON C, BUENAVISTA A, ROHRLACH B, et al. A Geological Review of the Tampakan Copper-Gold Deposit, Southern Mindanao, Philippines[C]//Proceedings PACRIM 2004 Congress. 2004:22.
[97] LEE C A, TANG M. How to Make Porphyry Copper Deposits[J]. Earth and Planetary Science Letters, 2020, 529:115868.
[98] SUN W, LIANG H, LING M, et al. The Link Between Reduced Porphyry Copper Deposits and Oxidized Magmas[J]. Geochimica et Cosmochimica Acta, 2013, 103:263-275.
[99] KISEEVA E S, WOOD B J. A Simple Model for Chalcophile Element Partitioning Between Sulphide and Silicate Liquids with Geochemical Applications[J]. Earth and Planetary Science Letters, 2013, 383:68-81.
[100] RIPLEY E M, BROPHY J G, LI C. Copper Solubility in a Basaltic Melt and Sulfide Liquid/Silicate Melt Partition Coefficients of Cu and Fe[J]. Geochimica et Cosmochimica Acta, 2002, 66:2791-2800.
[101] LE ROUX V, DASGUPTA R, LEE C A. Recommended Mineral-Melt Partition Coefficients for FRTEs (Cu), Ga, and Ge During Mantle Melting[J]. American Mineralogist, 2015, 100:2533-2544.
[102] REEKIE C, JENNER F E, SMYTHE D J, et al. Sulfide Resorption During Crustal Ascent and Degassing of Oceanic Plateau Basalts[J]. Nature Communications, 2019, 10:1-11.
[103] LIU X, XIONG X, AUDéTAT A, et al. Partitioning of Copper Between Olivine, Orthopyroxene, Clinopyroxene, Spinel, Garnet and Silicate Melts at Upper Mantle Conditions[J]. Geochimica et Cosmochimica Acta, 2014, 125:1-22.
[104] DING S, DASGUPTA R. The Fate of Sulfide During Decompression Melting of Peridotite-Implications for Sulfur Inventory of the MORB-source Depleted Upper Mantle[J]. Earth and Planetary Science Letters, 2017, 459:183-195.
[105] BEERMANN O, BOTCHARNIKOV R E, HOLTZ F, et al. Temperature Dependence of Sulfide and Sulfate Solubility in Olivine-Saturated Basaltic Magmas[J]. Geochimica et Cosmochimica Acta, 2011, 75:7612-7631.
[106] JUGO P J. Sulfur Content at Sulfide Saturation in Oxidized Magmas[J]. Geology, 2009, 37:415-418.
[107] SUN W, ARCULUS R J, KAMENETSKY V S, et al. Release of Gold-Bearing Fluids in Convergent Margin Magmas Prompted by Magnetite Crystallization[J]. Nature, 2004, 431:975-978.
[108] CARMICHAEL I S. The Redox States of Basic and Silicic Magmas:A Reflection of their Source Regions?[J]. Contributions to Mineralogy and Petrology, 1991, 106:129-141.
[109] COTTRELL E, KELLEY K A. The Oxidation State of Fe in MORB Glasses and the Oxygen Fugacity of the Upper Mantle[J]. Earth and Planetary Science Letters, 2011, 305:270-282.

备注/Memo

备注/Memo:
收稿日期:2021-05-01;改回日期:2021-07-10。
基金项目:国家自然科学基金"陆内Cu-Au和W-Mo成矿机制:以下扬子成矿带为例(编号:42030801)"和国家自然科学基金"皖南茶亭早白垩世中酸性岩浆岩与斑岩型铜金成矿研究(编号:42011540384)"项目联合资助。
作者简介:杨晓勇,1964年生,男,教授,博士生导师,主要从事矿床地质、地球化学研究。Email:xyyang@ustc.edu.cn。
通讯作者:蔡逸涛,1982年生,男,高级工程师,主要从事矿床地质、成矿流体研究。Email:cyitao@cgs.cn。
更新日期/Last Update: 1900-01-01