[1]于俊杰,刘平,林丰增,等.福建三沙湾90 ka以来沉积物来源及环境演变研究[J].华东地质,2022,43(01):30-39.[doi:10.16788/j.hddz.32-1865/P.2022.01.003]
 YU Junjie,LIU Ping,LIN Fengzeng,et al.Sediment sources and environment evolution since 90 ka in Sansha Bay, Fujian Province[J].East China Geology,2022,43(01):30-39.[doi:10.16788/j.hddz.32-1865/P.2022.01.003]
点击复制

福建三沙湾90 ka以来沉积物来源及环境演变研究()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
43
期数:
2022年01期
页码:
30-39
栏目:
专辑
出版日期:
2022-03-28

文章信息/Info

Title:
Sediment sources and environment evolution since 90 ka in Sansha Bay, Fujian Province
作者:
于俊杰1 刘平2 林丰增3 王继龙1 丁大林4 彭博1 武彬1 劳金秀1
1. 中国地质调查局南京地质调查中心, 江苏 南京 210016;
2. 华东师范大学河口海岸学国家重点实验室, 上海 200062;
3. 宁德市自然资源局, 福建 宁德 352100;
4. 重庆邮电大学通信与信息工程学院, 重庆 400065
Author(s):
YU Junjie1 LIU Ping2 LIN Fengzeng3 WANG Jilong1 DING Dalin4 PENG Bo1 WU Bin1 LAO Jinxiu1
1. Nanjing Center, China Geological Survey, Nanjing 210016, Jiangsu, China;
2. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China;
3. Ningde Bureau of Natural Resources, Ningde 352100, Fujian, China;
4. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
关键词:
重矿物地球化学三沙湾物源海平面变化
Keywords:
heavy mineralsgeochemical elementsSansha Bayprovenancesea level change
分类号:
P67
DOI:
10.16788/j.hddz.32-1865/P.2022.01.003
摘要:
三沙湾是福建省最大的海湾,也是中国东部典型的基岩半封闭海湾,其冲淤变化受山溪性河流和潮汐输运泥沙量变化影响,明确物源演变特征对于研究湾内沉积演化趋势具有重要意义。以三沙湾NDGK2钻孔为研究对象,在前期地层序列和年代框架研究的基础上,通过重矿物和地球化学特征揭示90 ka以来的物源演变特征,进一步揭示三沙湾在全球气候海平面波动下的环境演变规律。重矿物分析显示:MIS5、MIS3和MIS1高海面阶段以自生矿物为主,锆石含量相对较低,ZTR指数较低;MIS4和MIS2低海面阶段以褐铁矿为主,锆石含量相对较高,ZTR指数较高。主量元素和微量元素地球化学特征显示:MIS5、MIS3和MIS1高海面阶段Ti、Ba、Ni含量相对较高;MIS4和MIS2低海面阶段Ni、Ba含量相对较低。重矿物特征及地球化学指标揭示了90 ka以来高海面阶段悬浮泥沙主要来源于潮流输入的海域泥沙,低海面阶段泥沙主要来源于亚热带气候下以霍童溪为代表的当地河流。相比内陆地区,沉积物物源指标及孢粉组合特征均表明宁德地区对全球降温事件的响应并不敏感,冰期河流仍较发育。轨道时间尺度上,相比陆源物质输入,海平面上升才是三沙湾泥沙淤积的关键影响因素。
Abstract:
The Sansha Bay, representing a typical bedrock semi-enclosed bay in eastern China, is the largest bay in Fujian Province. Processes of erosion and accumulation in Sansha Bay are affected by sediment provenance derived from mountainous rivers and tides. Therefore, understanding the characteristic of sediment provenance has critical significance for discussing sedimentary evolution in the bay. In this study, we conduct a heavy minerals and geochemical elements analysis of drilling core NDGK2 obtained from Sansha Bay, reconstruct the evolution history of sediment provenance since approximately 90 ka, based on the published stratigraphic sequence and chronological framework. Under the influence of global climate and sea level changes, sedimentary evolution patterns in Sansha Bay were proposed. The result shows that minerals were dominated by authigenic pyrite with relatively low zircon contents and low ZTR index during the high sea level stages of (marine isotope stage) MIS5, MIS3, MIS1, and were dominated by limonite with relatively high zircon contents and high ZTR index during the low sea level stages of MIS4 and MIS2. Major and trace elements are characterized with obviously high content of Ti, Ba, and Ni during stages MIS5, MIS3 and MIS1 and low Ni and Ba contents during stages MIS4 and MIS2. Both mineral and element proxies suggest that the suspended sediments in the high sea level stages since 90 ka were mainly derived from Yangtze River and probably transported by tidal currents. In contrast, sediments in the low sea level stages consisted of the mixture that was derived from local rivers represented by Huotong River and from Yangtze River. Compared with inland area, the characteristics of sediment provenance and palynological assemblage indicate that Ningde area is not sensitive to global cooling events and rivers are still relatively developed even in the glacial period. On the Earth’s orbital scale, a high sea level plays a more substantial role than the terrigenous input in the formation of sedimentary environment. This study provided a valuable insight into the quantitative study of modern sediment sources in the Sansha Bay.

参考文献/References:

[1] 陈坚. 福建省近海海洋综合调查与评价总报告[M]. 北京:科学出版社, 2016. CHEN J. General report on the comprehensive survey and evaluation of offshore marine in Fujian Province[M]. Beijing:Science Press, 2016.
[2] 霍云龙,陈金民,林彩,等. 三沙湾表层沉积物重金属含量分布及生态风险评估[J]. 应用海洋学学报, 2015, 34(3):356-364. HUO Y L, CHEN J M, LIN C, et al. Distribution of heavy metal contents in surface sediments of Sansha Bay and ecological risk assessment[J]. Journal of Applied Oceanography, 2015, 34(3):356-364.
[3] 陈强,阎希柱,王松,等. 福建三沙湾滩涂表层沉积物污染物特征及生态风险评价[J]. 海洋湖沼通报, 2014, 2(7):37-44. CHEN Q, YAN X Z, WANG S, et al. Characteristics and Ecological Risk Assessment of Pollutants in the Intertidal Surface Sediments of Sansha Bay, Fujian[J]. Transactions of Oceanology and Limnology, 2014, 2(7):37-44.
[4] 蔡清海,杜琦,钱小明,等. 福建三沙湾海洋沉积物中重金属和过渡元素来源分析[J]. 地质学报, 2007, 81(10):1444-1448. CAI Q H, DU Q, QIAN X M, et al. Analysis on Source of Heavy Metals and Transitional Element in Maine Sediment in the Sansha Bay of Fujian[J]. Acta Geologica Sinica, 2007, 81(10):1444-1448.
[5] 张训华,孙晓明,印萍,等. 推进海岸带综合地质调查,为社会经济持续发展提供支撑[J]. 海洋地质前沿, 2015, 31(1):1-8. ZHANG X H, SUN X M, YIN P, et al. Sustain-able development of coastal zone bas integreted geologcal investigation[J]. Marine Geology Frontiers, 2015, 31(1):1-8.
[6] 严肃庄,曹沛奎. 三沙湾表层沉积物中矿物特征及其泥沙来源[J]. 台湾海峡, 1997, 16(2):128-134. YAN S Z, CAO P K, et al. Mineral characteristics of Sansha Bay and its sediment resources[J]. JOURNAL OF OCEANOGRAPHY IN TAIWAN STRAIT, 1997, 16(2):128-134.
[7] 丁大林. 宁德海岸带晚第四纪地层、古气候与沉积环境演化[D]. 青岛:中国海洋大学, 2020. DING D L. Late Quaternary stratigraphy, paleoclimate and sedimentary environmental evolution of the Ningde coastal zone[D]. Qingdao:Ocean University of China, 2020.
[8] 于俊杰, 彭博, 兰佑,等. 孢粉证据揭示MIS 5a以来福建东北沿海地区人类活动、海平面及气候变化[J]. 地球科学, 46(1):12. YU J J, PENG B, LAN Y, et al. Palynological Record Revealed Anthropogenic Deforestation Sea Level and Climate Changes since Marine Isotope Stage 5a in the Northeastern Coast of Fujian Province[J]. Earth Science, 46(1):12.
[9] 王天刚,ADRIAN F,姚仲友,等. 勘查植物地球化学在我国不同地球化学景观区的应用现状及展望[J]. 华东地质,2020,41(1):1-7. WANG T G,ADRIAN F,YAO Z Y,et al.Status and outlook of the biogeochemical exploration in various geochemical landscape zones in China[J].East China Geology,2020,41(1):1-7.
[10] 林鹏,丘喜昭. 福建省植被区划概要[J]. 武夷科学, 1985,5(1):247-254. LIN P, QIU X Z. An outline of division of vegetation in fujian province[J]. WUYI SCIENCE JOURNAL, 1985,5(01):247-254.
[11] REIMER P J, BARD E, B AYLISSA, et al. IntCal13 and MARINE13 radiocarbon age calibration curves 0-50,000 years cal BP[J]. Radiocarbon, 2013, 55(4):1869-1887.
[12] 刘彬,王学求. 长江中下游地区早古生代沉积岩地球化学特征及其构造背景与物源分析[J]. 大地构造与成矿学, 2018, 42(1):163-176. LIU B, WANG X Q. Geochemistry of Early Paleozoic Sedimentary Rocks in the Middle-Lower Reaches of the Yangtze River and its Constrains on Tectonic Setting and Provenance[J]. Geotectonica et Metallogenia, 2018, 42(1):163-176.
[13] 刘素美,张经. 沉积物中重金属的归一化问题——以Al为例[J]. 东海海洋, 1998,16(3):48-55. LIU S M, ZHANG J. Normalization of heavy metals to aluminum in marine sediments[J]. DONGHAI MARINE SCIENCE, 1998,16(3):48-55.
[14] YANGS, LI C, YOKOYAMAK. Elemental compositions and monazite age patterns of core sediments in the Changjiang Delta:Implications for sediment provenance and development history of the Changjiang River[J]. Earth & Planetary Science Letters, 2006, 245(3/4):762-776.
[15] 杨守业,李超,王中波,等. 现代长江沉积物地球化学组成的不均一性与物源示踪[J]. 第四纪研究, 2013, 33(4):645-655. YANG S Y, LI C, WANG Z B, et al. Heterogeneity and source tracing of geochemical composition of modern Yangtze River sediments[J]. Quaternary Research, 2013, 33(4):645-655.
[16] 黄湘通,郑洪波,杨守业,等. 长江三角洲DY03孔沉积物元素地球化学及其物源示踪意义[J]. 第四纪研究, 2009, 29(2):299-307. HUANG X T, ZHENG H B, YANG S Y, et al. Elemental geochemistry of the DY03 hole sediments in the Yangtze Delta and its source tracing significance[J]. Quaternary Research, 2009, 29(2):299-307.
[17] 梅西,张训华,刘健,等.南黄海3.50 Ma以来海陆环境演变的元素地球化学记录[J].吉林大学学报:地球科学版,2019,49(1):74-84. MEI X, ZHANG X H,LIU J, et al. Elemental Geochemical Record of Land and Sea Environmental Evolution Since 3.50 Ma in South Yellow Sea. Journal of Jilin University (Earth Science Edition),2019,49(1):74-84.
[18] GU J, CHENJ, SUN Q, et al. China’s Yangtze delta:Geochemical fingerprints reflecting river connection to the sea[J]. Geomorphology, 2014, 227(15):166-173.
[19] 郭玉龙. 浙闽入海中小河流沉积物的元素地球化学组成:物源及化学风化的影响[D]. 上海:同济大学, 2014. GUO Y L. Elemental geochemical composition of sediments from small and medium-sized rivers in Zhejiang and Fujian:influence of physical origin and chemical weathering[D]. Shanghai:Tongji University, 2014.
[20] YU E W, YANG S, ZJAO B, et al. Changes in environment and provenance within the Changjiang (Yangtze River) Delta during Pliocene to Pleistocene transition[J]. Marine Geology, 2019, 416:105976.
[21] 王张华,赵宝成,陈静,等. 长江三角洲地区晚第四纪年代地层框架及两次海侵问题的初步探讨[J]. 古地理学报, 2008, 10(1):99-110. WANG Z H, ZHAO B C, CHEN J, et al. Chronostratigraphy and two transgressions during the Late Quaternary in Changjiang delta area[J]. Journal of Paiaeogeography, 2008, 10(1):99-110.
[22] LIU J, SAITOY, WANG H, et al. Stratigraphic development during the Late Pleistocene and Holocene offshore of the Yellow River delta, Bohai Sea[J]. Journal of Asian Earth Sciences, 2009, 36(4/5):318-331.
[23] ZHAO B, WANG Z, CHEN J, et al. Marine sediment records and relative sea level change during late Pleistocene in the Changjiang delta area and adjacent continental shelf[J]. Quaternary International, 2008, 186:164-172.
[24] LIU J, ZHANG X, MEI X, et al. The sedimentary succession of the last~3.50 Myr in the western South Yellow Sea:Paleoenvironmental and tectonic implications[J]. Marine Geology, 2018, 399:47-65.
[25] 雒聪文,马玉贞,王凯,等. 东亚地区MIS 5时期孢粉记录的植被与气候研究进展[J]. 地球科学进展, 2019, 34(5):540-551. LUO C W,MA Y Z,WANG K,et al. Vegetation and climate inferred from pollen record in East Asian region during MIS 5:A review[J]. Advances in Earth Science,2019,34(5):540-551.
[26] 丁大林,张训华,于俊杰,等. 长江三角洲北翼后缘晚第四纪以来的沉积粒度特征及环境演化[J]. 海洋地质与第四纪地质, 2019, 39(4):34-45. DING D L, ZHANG X H, YU J J, et al. Sediment grain size distribution patterns of the late Quaternary on the back side of northern Yangtze RiverDelta and their environmental implications[J]. Marine Geology and Quaternary Geology, 2019, 39(4):34-45.
[27] GEYH M A, STREIF H, KUDRASS H. Sea-level changes during the late Pleistocene and Holocene in the Strait of Malacca[J]. Nature, 1979, 278(5703):441-443.
[28] ZHENG Z, YANG S, DENG Y, et al. Pollen record of the past 60 ka BP in the Middle Okinawa Trough:Terrestrial provenance and reconstruction of the paleoenvironment[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 307(1/4):285-300.
[29] OPPO D W, SUN Y. Amplitude and timing of sea-surface temperature change in the northern South China Sea:Dynamic link to the East Asian mon-soon[J]. Geology, 2005, 33(10):785-788.
[30] 王张华,丘金波,冉莉华,等. 长江三角洲南部地区晚更新世年代地层和海水进退[J]. 海洋地质与第四纪地质, 2004, 24(4):1-8. WANG Z H, QIU J B, RAN L H, et al. Late Pleistocene age stratigraphy and seawater progression in the southern Yangtze River Delta[J]. Marine Geology and Quaternary Geology, 2004, 24(4):1-8.
[31] LI G, LI P, LIU Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J]. Earth Science Reviews, 2014, 139:390-405.
[32] 丁大林,李广雪,徐继尚,等. 全新世亚洲季风演变[J]. 地学前缘, 2017, 24(4):114-123. DING D L, LI G X, XU J S, et al. Evolution of the Holocene Asian monsoon[J]. Geological foreground, 2017, 24(4):114-123.
[33] 曾从盛. 闽东北沿海晚第四纪海侵与海面变动[J]. 福建师范大学学报:自然科学版, 1997, 13(4):96-103. ZENG C S. Late Quaternary sea erosion and sea surface changes along the northeast Fujian coast[J]. Journal of Fujian Normal University:Natural Science Edition, 1997, 13(4):96-103.
[34] ROLETT B V, ZHENG Z, YUE Y. Holocene sea-level change and the emergence of Neolithic seafaring in the Fuzhou Basin(Fujian, China)[J]. Quaternary Science Reviews, 2011, 30(7/8):788-797.

相似文献/References:

[1]翁望飞,丁勇.德兴含铜埃达克质斑岩的地球化学特征、成因及地质意义[J].华东地质,2015,36(02):104.
[2]罗春林,刘高峰,左祖发.赣南坪市花岗岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及构造意义[J].华东地质,2016,37(02):79.[doi:10.16788/j.hddz.32-1865/P.2016.02.001]
 LUO Chun-lin,LIU Gao-feng,ZUO Zu-fa.LA-ICP-MS zircon U-Pb ages and geochemical characteristics of the Pingshi granitic pluton in southern Jiangxi and their tectonic significance[J].East China Geology,2016,37(01):79.[doi:10.16788/j.hddz.32-1865/P.2016.02.001]
[3]王建中钱壮志,徐 刚,姜 超.西秦岭白马山“C”型埃达克岩成因:地球化学、Sr-Nd-Pb同位素制约[J].华东地质,2016,37(03):174.[doi:10.16788/j.hddz.32-1865/P.2016.03.003]
 WANG Jian-zhong,QIAN Zhuang-zhi,XU Gang,et al.Petrogenesis of the Baimashan C-type adakite in Western Qinling: Constraints from their geochemistry and Sr-Nd-Pb isotopic compositions[J].East China Geology,2016,37(01):174.[doi:10.16788/j.hddz.32-1865/P.2016.03.003]
[4]杨义忠,王 徽,蔡 杨,等.北淮阳东段板桥岩体地球化学特征及同位素年代学研究[J].华东地质,2018,39(04):241.[doi:10.16788/j.hddz.32-1865/P.2018.04.001]
 YANG Yi-zhong,WANG Hui,CAI Yang,et al.Geochemical characteristics and isotope chronology study of the Banqiao granodiorite in the eastern part of North Huaiyang[J].East China Geology,2018,39(01):241.[doi:10.16788/j.hddz.32-1865/P.2018.04.001]
[5]张靖怡,张舒,张赞赞,等.北淮阳东端牛王寨岩体年代学及地球化学研究:对大别造山带早白垩世深部地质过程的制约[J].华东地质,2022,43(02):141.[doi:10.16788/j.hddz.32-1865/P.2022.02.002]
 ZHANG Jingyi,ZHANG Shu,ZHANG Zanzan,et al.Geochronology and geochemistry of Niuwangzhai pluton in east end of North Huaiyang:constraints on deep geological process of Dabie Orogen in Early Cretaceous[J].East China Geology,2022,43(01):141.[doi:10.16788/j.hddz.32-1865/P.2022.02.002]

备注/Memo

备注/Memo:
收稿日期:2021-09-06;改回日期:2021-12-27。
基金项目:中国地质调查局"宁德海岸带陆海统筹综合地质调查(编号:DD20189505)"项目资助。
作者简介:于俊杰,1983年生,男,高级工程师,硕士,主要从事第四纪地质调查与研究工作。Email:25320701@qq.com。
更新日期/Last Update: 1900-01-01