[1]鲁杏,张玲玲,崔先文,等.安徽淮北前常东铜铁矿区三维电性结构特征[J].华东地质,2022,43(03):268-275.[doi:10.16788/j.hddz.32-1865/P.2022.03.002]
 LU Xing,ZHANG Lingling,CUI Xianwen,et al.3D electrical structure of the Qianchang East copper iron mining area, Anhui Province[J].East China Geology,2022,43(03):268-275.[doi:10.16788/j.hddz.32-1865/P.2022.03.002]
点击复制

安徽淮北前常东铜铁矿区三维电性结构特征()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
43
期数:
2022年03期
页码:
268-275
栏目:
基础地质
出版日期:
2022-09-24

文章信息/Info

Title:
3D electrical structure of the Qianchang East copper iron mining area, Anhui Province
作者:
鲁杏 张玲玲 崔先文 汪青松
安徽省勘查技术院, 安徽 合肥 230031
Author(s):
LU Xing ZHANG Lingling CUI Xianwen WANG Qingsong
Geological Exploration Technology Institute of Anhui Province, Hefei 230031, Anhui, China
关键词:
前常东矿区三维可控源音频大地电磁测深Occam反演电性结构淮北地区
Keywords:
Qianchang East mining area3D controllable source audio frequency magnetotelluricOccam Inversionelectrical structureHuaibei area
分类号:
P746
DOI:
10.16788/j.hddz.32-1865/P.2022.03.002
摘要:
安徽省前常东铜铁矿是前常铜铁矿的深部矿。为了解前常东铜铁矿区的地下电性结构特征,对前常东矿段进行了三维可控源音频大地电磁法勘查工作。三维数据采集工作采用多面元组合的方式,数据反演采用二维Occam反演方法,反演结果以三维成图的形式多角度展示了该区地下电性结构。结果表明:前常东铜铁矿区第四系厚度为100~200 m,向北东方向逐渐变厚;大理岩主要分布在矿区南西角;三铺复式岩体呈"NE向深、SW向浅"的形态。三维可控源音频大地电磁法勘查清晰地揭示了该矿区深部电性结构特征,为该区深部找矿提供了参考。
Abstract:
The Qianchang East copper iron deposit in Anhui Province is a deep ore block of the Qianchang copper iron deposit. In order to understand the underground electrical structure features of Qianchang East ore block, 3D controllable source audio frequency magnetotelluric exploration was carried out in this ore block. 3D data was collected in the form of multi-panel combination, and the data inversion was conducted with Occam inversion method. The inversion results were mapped in 3D form, which shows the underground electrical structure of the area from multiple angles. The results indicate that the Quaternary thickness of Qianchang East ore block ranges between 100 m and 200 m, and gradually thickens northeastward. The marble mainly occurs in the southwest corner of the mining area. The Sanpu complex pluton becomes deep to NE and shallow to SW in shape. The 3D controllable source audio frequency magnetotelluric exploration clearly reveals the deep electrical structure features of the ore block and provides support for the deep prospecting in the area.

参考文献/References:

[1] 赵一鸣,张轶男,毕承思,等.安徽淮北三铺地区镁夕卡岩金(铜、铁)矿床生成地质环境、分带和流体演化[J].矿床地质,1999,18(1):1-10. ZHAO Y M,ZHANG Y N,BI C S,et al. The metallogenic geological setting,zonation and fluid Evolution of the Au (Cu,Fe) magnesian skarn deposits in sanpu area,Anhui province[J].Mineral Deposits,1999,18(1):1-10.
[2] 汪青松.安徽省淮北前常-徐楼覆盖区综合找矿方法研究[J].安徽地质,2010,34(3):50-56. WANG Q S. Study on comprehensive ore-prospecting method applied in the Qianchang-Xulou covered area,Huaibei,Anhui province[J].Geology of Anhui,2010,34(3):50-56.
[3] 汪青松.淮北地区矽卡岩型铁铜矿床控矿条件分析与成矿模式[J].资源调查与环境,2010,31(2):103-111. WANG Q S. Analysis on ore-controlling conditions and metallogenic model of skarn type Fe and Cu deposits in Huaibai area[J].Resources Survey and Environment,2010,31(2):103-111.
[4] 汪青松.CSAMT法二维电阻率异常分类及其地质解释——以淮北前常-徐楼地区为例[J].安徽地质,2011,35(1):44-47. WANG Q S. CSAMT 2D resistivity anomaly classification and it’s geological interpretation-an example from the Qianchang-Xulou area in Huaibei[J]. Geology of Anhui,2011,35(1):44-47.
[5] 杨波,杜建国,胡海风,等.深部矿产地质调查中多元数据三维地质建模技术研究——以铜陵矿集区为例[J].华东地质,2017,38(3):218-227. YANG B,Du J G,Hu H F,et al.Three dimensional geological modeling technology of multivariate data in deep mineral survey:An example from the Tongling ore cluster area[J].East China Geology,2017,38(3):218-227.
[6] 张景,朱红兵,邸兵叶,等.宁芜北火山岩覆盖区时间域激电三维反演及找矿预测——以吴庄工区为例[J].华东地质,2018,39(2):126-133. ZHANG J,ZHU H B,DI B Y,et al.Time-domain IP 3D inversion and ore-prospecting prediction of volcanic rock coverage area in the borthern Nanjing-Wuhu area:A case study of the WuZhuang work area[J]. East China Geology,2018,39(2):126-133.
[7] 陈忠良,马雷.浅覆盖区第四系三维地质结构模型不确定性分析——以运漕幅离散钻孔为例[J].华东地质,2017,38(3):210-217. CHEN Z L,MA L.Uncertainty analysis of 3D Quaternary geological structural model under a shallow cover,with the discrete boreholes in Yuncao map as an example[J]. East China Geology,2017,38(3):210-217.
[8] 王佳龙,张宝松,陈基炜,等.大地电磁测深不同反演方法的应用效果对比——以安徽皖江地区页岩气调查为例[J].华东地质,2020,41(1):79-87. WANG J L,ZHANG B S,CHEN J W,et al.Comparison of application effect of magnetotelluric sounding using different inversion methods in shale gas investigation in Wanjiang area of Anhui province[J]. East China Geology,2020,41(1):79-87.
[9] 王显祥,底青云,许诚. CSAMT的多偶极子源特征与张量测量[J].地球物理学报,2014,57(2):651-661. WANG X X,DI Q Y,XU C.Characteristics of multiple sources and tensor measurement in CSAMT[J].Chinese Journal of Geophysics,2014,57(2):651-661.
[10] 冯兵,王珺璐,周祥文,等.CSAMT探测中电场Ex全区视电阻率定义及应用[J].煤田地质与勘探,2013,41(6):78-82. FENG B,WANG J L,ZHOU X W,et al.Application of full-region apparent resistivity of CSAMT Ex in exploration[J].Coal Geology of Exploration,2013,41(6):78-82.
[11] 王顺国,熊彬.广域视电阻率的数值计算方法[J].物探化探计算技术,2012,34(4):380-383. WANG S G,XIONG B. Numerical calculation method of wide area apparent resistivity[J]. Geophysical and Geochemical Calculation Technology,2012,34(4):380-383.
[12] 底青云,石昆法,王妙月,等.CSAMT法和高密度电法探测地下水资源[J].地球物理学进展,2001,16(3):53-57. DI Q Y,SHI K F,WANG M Y,et al. CSAMT method and high density electrical method to detect groundwater resources[J].Progress in Geophysics,2001,16(3):53-57.
[13] 孙英勋.CSAMT法在高速公路长大埋深隧道勘察中的应用研究[J].地球物理学进展,2005,20(4):1184-1189. SUN Y X. Application of CSAMT Method in investigation of long and deep buried tunnel of expressway[J]. Progress in Geophysics,2005,20(4):1184-1189.
[14] 柳建新,郭振威,郭荣文,等.CSAMT和重力方法在狮子湖温泉深部地球物理勘查中的应用[J].地球物理学进展,2009,24(5):1868-1873. LIU J X,GUO Z W,GUO R W,et al. Application of CSAMT and gravity method in deep geophysical exploration of Shizihu hot spring[J]. Progress in Geophysics,2009,24(5):1868-1873.
[15] 佟铁钢,刘春明,何继善.CSAMT全区视电阻率数值模拟及应用探讨[J].地球物理学进展,2009,24(5):1855-1860. TONG T G,LIU C M,HE J S. Numerical simulation and application of apparent resistivity in CSAM[J]. Progress in Geophysics,2009,24(5):1855-1860.
[16] 王若,殷长春,王秒月,等.CSAMT法一维层状介质灵敏度分析[J].地球物理学进展,2014,29(3):1284-1291. WANG R,YIN C C,WANG M Y,et al.Sensitivity analysis of CSAMT method for one-dimensional layered media[J]. Progress in Geophysics,2014,29(3):1284-1291.
[17] 杨龙彬,张胜业,雷胜兰,等.西准噶尔包古图地区岩体三维电性及深部结构特征[J].地球科学:中国地质大学学报,2014,39(5):629-636. YANG L B,ZHANG S Y,LEI S L,et al. Three dimensional electrical properties and deep structural characteristics of rock mass in Baogutu area, western Junggar[J]. Earth Science:Journal of China University of Geosciences,2014,39(5):629-636.
[18] 张罗磊,于鹏,王家林,等.光滑模型与尖锐边界结合的MT二维反演方法[J].地球物理学报, 2009,52(6):1625-1632. ZHANG L L,YU P,WANG J L,et al. MT 2D inversion method based on smooth model and sharp boundary[J].Chinese Journal of Geophysics,2009,52(6):1625-1632.
[19] 张帆,魏文博,金胜,等.海岸效应对近海地区大地电磁测深数据畸变作用研究[J].地球物理学报, 2012,55(12):4023-4035. ZHANG F,WEI W B,JIN S, et al. Study on the effect of coast effect on the distortion of magnetotelluric sounding data in offshore area[J]. Chinese Journal of Geophysics,2012,55(12):4023-4035.
[20] 吴小平,徐果明.大地电磁数据的occam反演改进[J].地球物理学报,1998,41(4):547-554. WU X P, XU G M. Improvement of Occam inversion of magnetotelluric data[J]. Chinese Journal of Geophysics, 1998,41(4):547-554.
[21] 鲁杏,崔先文.激发极化测深数据反演方法及应用[J].地质科技情报,2015,34(3):202-207. LU X, CUI X W. Inversion method and application of induced polarization sounding data[J].Geological Science and Technology Information,2015,34(3):202-207.

备注/Memo

备注/Memo:
收稿日期:2021-6-11;改回日期:2021-10-18。
基金项目:安徽省重点研发计划"基于人工源电磁法的页岩气绿色勘查新技术研究(编号:2022107020010)"项目资助。
作者简介:鲁杏,1988年生,男,高级工程师,硕士,主要从事电磁法勘探科研与生产工作。Email:lu.xing@163.com。
更新日期/Last Update: 1900-01-01