[1]闫峻.长江中下游—大别造山带中生代火山岩特征及成因[J].华东地质,2022,43(04):375-390.[doi:10.16788/j.hddz.32-1865/P.2022.04.001]
 YAN Jun.Characteristics and petrogenesis of the Mesozoic volcanic rocks from the Middle-Lower Yangtze River Belt and the Dabie Orogen[J].East China Geology,2022,43(04):375-390.[doi:10.16788/j.hddz.32-1865/P.2022.04.001]
点击复制

长江中下游—大别造山带中生代火山岩特征及成因()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
43
期数:
2022年04期
页码:
375-390
栏目:
火山岩理论研究
出版日期:
2022-12-23

文章信息/Info

Title:
Characteristics and petrogenesis of the Mesozoic volcanic rocks from the Middle-Lower Yangtze River Belt and the Dabie Orogen
作者:
闫峻
合肥工业大学资源与环境工程学院, 安徽 合肥 230009
Author(s):
YAN Jun
School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
关键词:
中生代火山岩同位素地幔俯冲长江中下游大别造山带
Keywords:
volcanic rockisotopemantlesubductionMiddle-Lower Yangtze River BeltDabie Orogen
分类号:
P588.14
DOI:
10.16788/j.hddz.32-1865/P.2022.04.001
摘要:
中国中东部长江中下游地区和大别造山带广泛发生了中生代岩浆作用,火山岩均集中在中间阶段,时代分别为135~127 Ma和133~125 Ma。长江中下游地区多个中生代火山盆地发育高钾钙碱性系列双峰式火山岩和中基性橄榄安粗岩系列火山岩。这些岩石富集大离子亲石元素,亏损高场强元素,弱富集Sr-Nd-Hf同位素,具有高放射成因Pb同位素组成,指示地幔源区地壳组分的加入。其中,中基性火山岩起源于富集的岩石圈地幔,受到俯冲大洋板片析出的含水熔体交代,晚阶段的超碱质火山岩起源于类似交代介质交代的软流圈地幔,指示岩浆源区的加深。大别造山带中生代火山岩包括高钾钙碱性系列和超钾质系列,均富集大离子亲石元素,亏损高场强元素,高度富集Sr-Nd-Hf同位素,具有低放射成因Pb同位素组成,与长江中下游地区差异显著。其中,高钾钙碱性系列火山岩起源于交代富集的岩石圈地幔,交代介质为印支期深俯冲的华南陆壳析出熔体,而晚阶段的超钾质火山岩起源更深,是深俯冲的华南陆壳在高压下,多硅白云母分解产生熔体交代的地幔源区。长江中下游地区幔源火山岩记录了俯冲的古太平洋板块的直接物质贡献,而大别造山带地幔源区记录了印支期俯冲陆壳的信息。两个构造单元火山岩早、晚阶段均表现出岩浆源区的加深,长江中下游地区对应了古太平洋板块的低角度俯冲及俯冲板片的回卷(约130 Ma),而大别造山带在古太平洋板块俯冲回卷的动力学机制下,发生造山带的垮塌和岩石圈的拆沉。
Abstract:
Mesozoic magmatic rocks are widely distributed in the Middle-Lower Yangtze River Belt (MLYRB) and the Dabie Orogen (DB), with the active stages of 135~127 Ma and 133~125 Ma respectively for the volcanic rocks. High potassium calc-alkaline bimodal volcanics and shoshonitic volcanic rocks crop out in the several Mesozoic volcanic basins of the MLYRB. These rocks have consistent characteristics of enriched large ion lithophile elements, depleted high field-strength elements, weak enriched Sr-Nd-Hf isotopies and high radiogenic Pb isotopic components, indicating crustal materials involved into the mantle sources. Among them, the intermediate-basic volcanic rocks derived from enriched lithospheric mantle, which was metasomatized by hydrous melt released from subducted oceanic slab. The late stage super alkaline volcanic rocks originated from the asthenospheric mantle, which suffered matasomatism of the similar metasomatic agent, inferring deepening of the magma source. The Mesozoic volcanic rocks in the DB dominantly include two rock series of high potassium calc-alkaline and super potassic. These rocks show quite different geochemical features from those in the MLYRB, by enriched large ion lithophile elements, depleted high field-strength elements, strongly enriched Sr-Nd-Hf isotopies and low radiogenic Pb isotopic components. The high potassium calc-alkaline volcanic rocks in the DB also derived from enriched lithospheric mantle, but the metasomatic agent was melted form the Indosinian deep subducted continental crust of South China. The late stage super potassic volcanic rocks originated from deeper mantle source, where phengite in the deep subducted continental crust of South China broken down under high pressure. Direct materials contribution from the subducted paleo-Pacific plate imprinted in the mantle-derived volcanic rocks in the MLYRB, but the late Mesozoic magma sources in the DB only recorded information of the Indosinian deep subducted continental crust. The volcanic activities in the two tectonic units indicate a similar process of deepening of magmatic source from early to late, corresponding to low angle subduction and then rollback (ca. 130 Ma) of the paleo-Pacific plate beneath the MLYRB. Due to dynamic triggering of the subduction and rollback of the paleo-Pacific plate, orogenic collapse and lithospheric delamination took place in the DB.

参考文献/References:

[1] WANG Q, WYMAN D A, XU J F, et al. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China:Implications for partial melting and delamination of thickened lower crust[J]. Geochimica et Cosmochimica Acta, 2007, 71:2609-2636.
[2] HE Y S, LI S G, HOEFS J, et al. Sr-Nd-Pb isotopic compositions of Early Cretaceous granitoids from the Dabie orogen:Constraints on the recycled lower continental crust[J]. Lithos, 2013, 156/159:204-217.
[3] YAN J, LIU J M, LI Q Z, et al. In situ zircon Hf-O isotopic analyses of late Mesozoic magmatic rocks in the Lower Yangtze River Belt, central eastern China:Implications for petrogenesis and geodynamic evolution[J]. Lithos, 2015, 227:57-76.
[4] YAN J, LIU X Q, WANG S N, et al. Metallogenic type controlled by magma source and tectonic regime:Geochemical comparisons of Mesozoic magmatism between the Middle-Lower Yangtze River Belt and the Dabie Orogen, eastern China[J]. Ore Geology Reviews, 2021, 133:104095.
[5] 刘晓强. 大别造山带晚中生代岩浆岩成因及其构造背景[D].合肥:合肥工业大学, 2018.LIU X Q. Petrogenesis and tectonic setting of the late Mesozoic magmatic rocks in the Dabie Orogen[D]. Hefei:Hefei University of Technology, 2018.
[6] 代富强. 大别-苏鲁造山带和华北东南缘白垩纪岩浆岩地球化学研究[D]. 合肥:中国科学技术大学, 2017.DAI F Q. A geochemical study of Cretaceous igneous rocks from the Dabie-Sulu orogenic belt and the southeastern margin of the North China Block[D]. Hefei:University of Science and Technology of China, 2017.
[7] YAN J, LIU H Q, SONG C Z, et al. Zircon U-Pb geochronology of the volcanic rocks from Fanchang-Ningwu volcanic basins in the Lower Yangtze region and its geological implications[J]. Chinese Science Bulletin, 2009, 54(16):2895-2904.
[8] 陶奎元, 邢光福, 杨祝良, 等. 浙江中生代火山岩时代厘定和问题讨论:兼评Lapierre等关于浙江中生代火山活动时代的论述[J]. 地质论评, 2000, 46(1):14-21.TAO K Y, XING G F, YANG Z L, et al. Determination of and discussion in the ages of Mesozoic volcanic rocks in Zhejiang:Comments on the argumentation of Lapierre et al[J]. Geological Review, 2000, 46(1):14-21.
[9] XING G F, LI J Q, DUAN Z, et al. Mesozoic-Cenozoic volcanic cycle and volcanic reservoirs in east China[J]. Journal of Earth Science, 2021, 32:742-765.
[10] DAI F Q, ZHAO Z F, DAI L Q, et al. Slab-Mantle interaction in the petrogenesis of andesitic magmas:Geochemical evidence from postcollisional intermediate volcanic rocks in the Dabie orogen, China[J]. Journal of Petrology, 2016, 57(6):1109-1134.
[11] 董树文, 张岳桥, 龙长兴, 等. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报, 2007, 81(11):1449-1461.DONG S W, ZHANG Y Q, LONG C X, et al. Jurassic Tectonic Revolution in China and New Interpretation of the Yanshan Movement[J]. Acta Geologica Sinica, 2007, 81(11):1449-1461.
[12] MAO J R, LI Z L, YE H M. Mesozoic tectono-magmatic activities in South China:Retrospect and prospect[J]. Science China:Earth Sciences, 2014, 57(12):2853-2877.
[13] WANG Y J, FAN W M, SUN M, et al. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block:a case study in the Hunan Province[J]. Lithos, 2007, 96:475-502.
[14] ZHOU X M, LI W X. Origin of Late Mesozoic igneous rocks in Southeastern China:implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326:269-287.
[15] ZHOU X M, SUN T, SHEN W Z, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:a response to tectonic evolution[J]. Episodes, 2006, 29:26-33.
[16] LI Z X, LI X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:a flat-slab subduction model[J]. Geology, 2007, 35:179-182
[17] SUN W D, DING X, HU Y H, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 2007, 262:533-542.
[18] WANG Y J, FAN W M, ZHANG G W, et al. Phanerozoic tectonics of the South China Block:Key observations and controversies[J]. Gondwana Research, 2013, 23:1273-1305.
[19] WANG Y J, ZHANG Y H, FAN W M, et al. Numerical modeling for generation of Indo-Sinian peraluminous granitoids Hunan Province:basaltic underplating vs tectonic thickening[J]. Science in China (series D), 2002, 45:1042-1056.
[20] XIE G Q, MAO J W, LI X W, et al. Late Mesozoic bimodal volcanic rocks in the Jinniu basin, Middle-Lower Yangtze River Belt (YRB), East China:Age, petrogenesis and tectonic implications[J]. Lithos, 2011, 127:144-164.
[21] 闫峻, 史磊, 李全忠, 等. 长江中下游地区怀宁盆地火山岩锆石LA-ICPMS定年[J]. 地质论评, 2013, 59(6):1218-1226.YAN J, SHI L, LI Q Z, et al. Zircon LA-ICPMS Dating of the Volcanic Rocks from Huaining Basin in the Middle-Lower Yangtze Valley[J]. Geological Review, 2013, 59(6):1218-1226.
[22] 薛怀民, 马芳, 关海燕, 等. 怀宁盆地火山岩的年代学、地球化学及与长江中下游其他火山岩盆地的对比[J]. 中国地质, 2013, 40(3):694-714.XUE H M, MA F, GUAN H Y, et al. Geochronology and geochemistry of volcanic rocks in Huaining basin in comparison with other basins in the middle-lower Yangtze region[J]. Geology in China, 2013, 40(3):694-714.
[23] ZHOU T F, FAN Y, YUAN F, et al. Geochronology of the volcanic rocks in the Lu-Zong basin and its significance[J]. Science in China (Series D), 2008,51:1470-1482.
[24] 薛怀民, 马芳, 曹光跃. 长江中下游地区晚中生代橄榄玄粗岩系列火山岩:年代学格架、地球化学特征及成因讨论[J]. 地质学报, 2015, 89(8):1380-1401.XUE H M, MA F, CAO G Y. Late Mesozoic shoshonitic volcanic rocks in the Middle and Lower Yangtze River Reaches:ages, geochemical and genesis[J]. Acta Geologica Sinica, 2015, 89(8):1380-1401.
[25] CHEN L, ZHAO Z F, ZHENG Y F. Origin of andesitic rocks:Geochemical constraints from Mesozoic volcanism in the Luzong basin, South China[J]. Lithos, 2014, 190/191:220-239.
[26] 刘春,闫峻,宋传中,等. 长江中下游繁昌盆地火山岩年代学和地球化学:岩石成因和地质意义[J]. 岩石学报,2012, 28(10):3228-3240.LIU C, YAN J, SONG C Z, et al. Geochronology and geochemistry of the volcanic rocks from Fanchang basin in the lower Yangtze region:petrogenesis and geological significance[J]. Acta Petrologica Sinica, 2012, 28(10):3228-3240.
[27] 王丽娟, 王汝成, 于津海, 等. 宁芜盆地火山-侵入岩的时代、地球化学特征及其地质意义[J]. 地质学报, 2014, 88(7):1247-1272.WAGN L J, WANG R C, YU J H, et al. Geochrology, geochemistry of volcanic-intrusive rocks in the Ningwu basin and its geological implication[J]. Acta Geologica Sinica, 2014, 88(7):1247-1272.
[28] TANG Y J, ZHANG H F, YING J F, et al. Rapid eruption of the Ningwu volcanics in eastern China:Response to Cretaceous subduction of the Pacific plate[J]. Geochemistry Geophysics Geosystems, 2013, 14:1703-1721.
[29] 张少琴, 王丽娟, 杨颍鹤. 长江中下游溧水盆地火山岩的时代、地球化学特征及其地质意义[J]. 高校地质学报, 2015, 21(1):15-30.ZHANG S Q, WANG L J YANG Y H. Geochronology and Geochemistry of Volcanic Rocks in the Lishui Basin in the Middle and Lower Reaches of Yangtze River and its Geological Implications[J]. Geological Journal of China Universities, 2015, 21(1):15-30.
[30] 窦志娟, 杨祝良, 陈志洪, 等.长江中下游成矿带溧水盆地(次)火山岩的年代学及其意义[J]. 矿物岩石, 2015, 35(2):35-31.DOU Z J, YANG Z L, CHEN Z H, et al. Geochronology and significance of Lishui basin(sub) volcanic rocks of the Yangtze River metallogenic belt[J]. Journal of Mineraology and Petrology, 2015, 35(2):35-31.
[31] 黄皓. 北淮阳白垩纪火山岩的年代学和地球化学研究[D]. 北京:中国地质科学院, 2012.HUANG H. Geochronological and geochemical study on the Mesozoic volcanic rocks in Beihuaiyang belt[D]. Beijing:Chinese Academy of Geological Science, 2012.
[32] GAO X Y, ZHAO T P, ZHAO J H. Petrogenesis of the early Cretaceous volcanic rocks in the North Huaiyang tectono-magmatic unit of the Dabie Orogen, eastern China:Implications for crust-mantle interaction[J]. Journal of Asian Earth Sciences, 2016, 118:51-67.
[33] 夏群科, 郑永飞, DELOULE E.大别山碰撞后火山岩的锆石U-Pb年龄和氧同位素组成[J]. 高校地质学报, 2003, 9(2):163-171.XIA Q K, ZHENG Y F, DELOULE E. U-Pb Ages and Oxygen Isotope Compositions of Zircons from Post-Collisional Volcanic Rocks of Dabieshan[J]. Geological Journal of China Universities, 2003, 9(2):163-171.
[34] 安徽省区域地质调查队. 1:5万万油店幅区域地质调查报告[R]. 合肥:安徽省区域地质调查队, 1992.Regional Geological Survey Team of Anhui Province. 1:50000 regional geological survey report of Wanyoudian. Hefei:Regional Geological survey Team of Anhui Province,1992.
[35] 杜玉雕, 魏国辉. 安徽庐枞盆地枞阳地区玄武质火山岩地球化学特征及其地质意义[J]. 华东地质,2019, 40(3):188-198.DU Y D, WEI G H. Geochemical characteristics and geological significance of the basaltic volcanic rocks in the Zongyang area of Luzong basin, Anhui provience[J]. East China Geology, 2019, 40(3):188-198.
[36] 邱检生, 王德滋, 刘洪, 等. 大别造山带北缘后碰撞富钾火山岩:地球化学与岩石成因[J]. 岩石学报, 2002, 18(3):319-330.QIU J S, WANG D Z, LIU H, et al. Post-collisional potash-rich volcanic rocks in the north margin of Dabie orogenic belt:geochemistry and petrogenesis[J]. Acta Petrologica Sinica, 2002, 18(3):319-330.
[37] BOYNTON W V. Geochemistry of the rare earth elements:meteorite studies//HENDERSON, P. Rare Earth Element Geochemistry[M]. Elservier, 1984:63-114.
[38] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society Special Publications, 1989, 42:313-345.
[39] LI S G, NIE Y H, HART S R, et al. Interaction between subducted continental crust and the mantle -II:Sr and Nd isotopic geochemistry of the syncollisional mafic-ultramafic[J]. Science in China (Series D), 1998, 41:632-638.
[40] LI S G, HUANG F, ZHOU H Y, et al. U-Pb isotopic compositions of the ultrahigh pressure metamorphic (UHPM) rocks from Shuanghe and gneisses from Northern Dabie zone in the Dabie Mountains, central China:Constraint on the exhumation mechanism of UHPM rocks[J]. Science in China (Series D), 2003, 46:200-209.
[41] AMES L, ZHOU G Z, XIONG B C. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China[J]. Tectonics, 1996, 15:472-489.
[42] 张宏飞, 高山, 张本仁, 等. 大别山地壳结构的Pb同位素地球化学示踪[J]. 地球化学, 2001, 30(4):395-401.ZHANG H F, GAO S, ZHANG B R, et al. Pb isotopic study on crustal structure of Dabie mountains, central China[J]. Geochimica, 2001, 30(4):395-401.
[43] LI S G, JAGOUTZ E, CHEN Y Z, et al. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, central China[J]. Geochimica et Cosmochimica Acta, 2000, 64:1077-1093.
[44] GAO S, LING W L, QIU Y M, et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton:evidence for Cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 1999, 63:2071-2088.
[45] CHEN J F, YAN J, XIE Z, et al. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze Region in Eastern China:constrains on sources[J]. Physics and Chemistry of the Earth (A), 2001, 26:719-731.
[46] PLANK T, LANGMUIR C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145:325-394.
[47] PATINO DOUCE A E, BEARD J S. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar[J]. Journal of Petrology, 1995, 36:707-738.
[48] RAPP R P, WATSON E B. Dehydration melting of metabasalt at 8~32 kbar:implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36:891-931.
[49] FOLEY S. Petrological characterization of the source components of potassic magmas:geochemical and experimental constraints[J]. Lithos, 1992a, 28:187-204.
[50] FOLEY S. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas[J]. Lithos, 1992b, 28:435-453.
[51] FOLEY S F, VENTURELLI G, GREEN D H, et al. The ultrapotassic rocks:characteristics, classification and constraints for petrogenetic models[J]. Earth Science Reviews, 1987, 24:81-134.
[52] MILLER C, SCHEUSTER R, KLOTZLI U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Journal of Petrology, 1999, 40:1399-1424.
[53] CONTICELLI S, AVANZINELLI R, AMMANNATI E, et al. The role of carbon from recycled sediments in the origin of ultrapotassic igneous rocks in the Central Mediterranean[J]. Lithos, 2015, 232:174-196.
[54] CONTICELLI S, MARCHIONNI S, ROSA D, et al. Shoshonite and sub-alkaline magmas from an ultrapotassic volcano:Sr-Nd-Pb isotope data on the Roccamonfina volcanic rocks, Roman Magmatic Province, Southern Italy[J]. Contributions to Mineralogy and Petrology, 2009, 157:41-63.
[55] TAYLOR S R, MCLENNAN S M. The Continental Crust:Its Composition and Evolution[M]. Oxford:Blackwell, 1985.
[56] RUDNICK R L, GAO S. Composition of the continental crust[J]. Treatise on Geochemistry, 2014, 4:1-51.
[57] ZHENG Y F, CHEN Y X. Continental versus oceanic subduction zones[J]. National Science Review, 2016, 3:495-519.
[58] ZINDLER A, HART S R. Chemical geodynamics[J]. Annual Review of Earth and Planetary Science, 1986, 14:493-571.
[59] MA C Q, EHLERS C, XU C H, et al. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane:constraints from geochemistry and Nd-Sr isotope systematics[J]. Precambrian Research,2000, 102:279-301.
[60] KELEMEN P B, HANGHOJ K, GREENE A R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[J]. Treatise on Geochemistry, 2003, 3:593-659.
[61] ZHENG Y F, XU Z, CHEN L, et al. Chemical geodynamics of mafic magmatism above subduction zones[J]. Journal of Asian Earth Science, 2020, 194:104185.
[62] ZHENG Y F. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10:1223-1254.
[63] KESSEL R, SCHEMIDT M W, ULMER P, et al. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120~180 km depth[J]. Nature, 2005, 437:724-727.
[64] ERSOY E Y, PALMER M R. Eocene Quaternary magmatic activity in the Aegean:Implications for mantle metasomatism and magma genesis in an evolving orogeny[J]. Lithos, 2013, 180/181:5-24.
[65] SCHMIDT M W. Melting of pelitic sediments at subarc depths:2. Melt chemistry, viscosities and a parameterization of melt composition[J]. Chemical Geology, 2015, 404:168-182.
[66] 王元龙, 张旗, 王焰. 宁芜火山岩的地球化学特征及其意义[J]. 岩石学报, 2001, 17(4):565-575.WANG Y L, ZHANG Q, WANG Y. Geochemical characteristics of volcanic rocks from Ningwu area and its significance[J]. Acta Petrologica Siniea, 2001, 17(4):565-575.
[67] CHEN L, ZHENG Y F, ZHAO Z F. Geochemical constraints on the origin of late Mesozoic andesites from the Ningwu basin in the Middle-Lower Yangtze Valley, South China[J]. Lithos, 2016, 254/255:94-117.
[68] ZHANG H F, GAO S, ZHONG Z, et al. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids:constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China[J]. Chemical Geology, 2002, 186:281-299.
[69] ZHENG Y F, CHEN Y X, DAI L Q, et al. Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J]. Science China:Earth Sciences, 2015, 58:1045-1069.
[70] ZHAO Z F, ZHENG Y F. Remelting of subducted continental lithosphere:petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt[J]. Science in China (Series D), 2009, 52:1295-1318.
[71] ZHENG Y F. Metamorphic chemical geodynamics in continental subduction zones[J]. Chemical Geology, 2012, 328:5-48.
[72] ZHAO Z F, ZHENG Y F, WEI C S, et al. Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China[J]. Chemical Geology, 2008, 253:222-242.
[73] ZHAO Z F, ZHENG Y F, WEI C S, et al. Origin of postcollisional magmatic rocks in the Dabie orogen:implications for crust-mantle interaction and crustal architecture[J]. Lithos, 2011, 126:99-114.
[74] ZHAO Z F, DAI L Q, ZHENG Y F. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction[J]. Scientific Reports, 2013, 3:3413.
[75] ZHAO Z F, DAI L Q, ZHENG Y F. Two types of the crust-mantle interaction in continental subduction zones[J]. Science in China (Series D), 2015, 58:1269-1283.
[76] ZHENG Y F, ZHAO Z F, CHEN Y X. Continental subduction channel processes:Plate interface interaction during continental collision[J]. Chinese Science Bulletin, 2013, 58:4371-4377.
[77] LAMBART S, LAPORTE D, SCHIANO P. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts:Review of the experimental constraints[J]. Lithos, 2013, 160/161:14-36.
[78] SCHMIDT M W, POLI S. Devolatilization during subduction//RUDNICK R L. Treatise on Geochemistry (second edition), Volume 4:The Crust[G]. Oxford:Elsevier, 2014:669-701.
[79] YE K, CONG B, YE D. The possible subduction of continental material to depths greater than 200 km[J]. Nature, 2000, 407:734-736.

备注/Memo

备注/Memo:
收稿日期:2022-06-06;改回日期:2022-08-08。
基金项目:国家自然科学基金(编号:42030801)项目资助。
作者简介:闫峻,1966年生,男,教授,博士,博士生导师,主要从事岩浆作用与金属成矿研究工作。Email:junyan@hfut.edu.cn。
更新日期/Last Update: 1900-01-01