[1]洪文涛,褚平利,杨圣都,等.浙东嵊州福泉山地区硅藻土地球化学及其古环境意义[J].华东地质,2022,43(04):503-513.[doi:10.16788/j.hddz.32-1865/P.2022.04.009]
 HONG Wentao,CHU Pingli,YANG Shengdu,et al.Geochemistry and palaeoenvironment implications of the Fuquanshan diatomite deposit in the Shengzhou region, eastern Zhejiang Province[J].East China Geology,2022,43(04):503-513.[doi:10.16788/j.hddz.32-1865/P.2022.04.009]
点击复制

浙东嵊州福泉山地区硅藻土地球化学及其古环境意义()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
43
期数:
2022年04期
页码:
503-513
栏目:
火山岩新领域研究
出版日期:
2022-12-23

文章信息/Info

Title:
Geochemistry and palaeoenvironment implications of the Fuquanshan diatomite deposit in the Shengzhou region, eastern Zhejiang Province
作者:
洪文涛1 褚平利1 杨圣都2 余明刚1 段政1
1. 中国地质调查局南京地质调查中心, 江苏 南京 210016;
2. 浙江省第四地质大队, 浙江 绍兴 312099
Author(s):
HONG Wentao1 CHU Pingli1 YANG Shengdu2 YU Minggang1 DUAN Zheng1
1. Nanjing Center, China Geological Survey, Nanjing 210016, Jiangsu, China;
2. The Fourth Geological Brigade of Zhejiang Province, Shaoxing, 312009, Zhejiang, China
关键词:
中新世硅藻土古环境地球化学嵊州福泉山浙江新昌盆地
Keywords:
Miocene diatomitepalaeoenvironmentgeochemistryFuquanshan in ShengzhouXinchang Basin in Zhejiang
分类号:
P588.14P52
DOI:
10.16788/j.hddz.32-1865/P.2022.04.009
摘要:
浙东新昌盆地是我国第二大硅藻土矿富集区,包含一系列中新世硅藻土矿床,是研究新生代古环境的理想对象。本文以嵊州地区福泉山古火山内的硅藻土为研究对象,探讨硅藻土的地球化学特征及其形成时的古环境。福泉山硅藻土具有相对较低的SiO2(61.3%~69.4%)以及高的Al2O3(14.6%~17.9%)及稀土元素含量,表明其中含有较多的碎屑物质。在微量元素组成上,相比伴生的嵊县组玄武岩,明显富集大离子亲石元素、轻稀土元素,并具有Eu、Nb、Ti的负异常,类似于白垩纪酸性火山岩。硅藻土中的碎屑物质可能主要来自于周边白垩纪酸性火山岩的风化剥蚀。根据硅藻土的化学风化指数以及其他参数,结合前人研究成果,认为福泉山硅藻土矿主要形成于中新世潮湿、温暖的淡水湖相环境,这与古近纪浙东地区的干旱环境截然不同,反映了古近纪—新近纪之交中国东部构造地貌的剧烈转折。
Abstract:
The Xinchang Basin in eastern Zhejiang Province contains a series of diatomite deposits interlaid in the basalts of the Miocene Shengxian Formation. The geochemical characteristics of deposits can provide crucial constraints on the Miocene palaeoenvironment of the eastern Zhejiang Province. In this study, three typical diatomites from the Fuquanshan volcano in Shengzhou City have been analyzed. Compared to the typical diatomites worldwide, low SiO2 (61.3%~69.4%), high Al2O3(14.6%~17.9%), and REE contents indicate that the Fuquanshan diatomites contain high proportions of fine detritus. Compared with the associated basalt of Shengxian Formation, the composition of the diatom is obviously enriched in large ion lithophile elements and light rare earth elements, with negative anomalies of Eu, Nb and Ti, similar to those in Cretaceous acid volcanic. Based on REE and incompatible elements characteristics, the fine detritus of the Fuquanshan diatomites were mainly derived from the Cretaceous silicic volcanic rocks, rather than coexisting basalt. Chemical weathering index, Sr/Ba ratio, etc., combined with previous paleontological studies support that the Miocene Fuquanshan diatomite deposits were formed in the freshwater lake under a warm humid climate, which is distinct from the Paleogene drought climate of eastern Zhejiang. Miocene diatom "Boom" in eastern China reflects the regional tectonic and palaeoenvironment transformation in the turn of Paleogene-Neogene.

参考文献/References:

[1] STAMATAKIS M G, FRAGOULIS D, CSIRIK G, et al. The influence of biogenic micro-silica-rich rocks on the properties of blended cements[J]. Cement and Concrete Composites, 2003, 25(2):177-184.
[2] SCOPELLITI G, BELLANCA A, MONIEN D, et al. Chemostratigraphy of the early Pliocene diatomite interval from MIS AND-1B core (Antarctica):Palaeoenvironment implications[J]. Global and Planetary Change, 2013, 102:20-32.
[3] LINDQVIST J K, LEE D E. High-frequency paleoclimate signals from Foulden Maar, Waipiata Volcanic Field, southern New Zealand:An Early Miocene varved lacustrine diatomite deposit[J]. Sedimentary Geology, 2009, 222(1/2):98-110.
[4] 王登红, 蒋成兴, 应汉龙, 等. 云南腾冲观音庙硅藻土矿床的地球化学特征及其与火山作用的成因联系[J]. 矿床地质, 2002(S1):917-920.WANG D H, JIANG C X, YING H L, et al. Geochemistry of Diatomite in Guanyinmiao and Its Genetic Relation to Volcanism in Tengchong, Yunnan[J]. Mineral Deposits, 2002(S1):917-920.
[5] 古白泯, 周义平. 云南省寻甸先锋盆地中新世褐煤与硅藻土沉积特征[J]. 地质论评,1994, 40(5):465-475.GU B M, ZHOU Y P. The Sedimentary characteristics of the Miocene Lignite and diatomite in Xianfeng Basin, Xundian, Yunan[J]. Geologic Review, 1994, 40(5):465-475.
[6] 马小顺, 黄静, 刘健峰. 吉林省长白县二道阳岔硅藻土矿矿床地质特征和找矿标志[J]. 世界有色金属, 2020(3):248-251.MA X S, HUANG J, LIU J F. Geological characteristics and prospecting criteria of erdaoyangcha diatomite deposit, Changbai County, Jilin Province[J]. World Nonferrous Metals, 2020(3):248-251.
[7] 何云霞, 高丽英, 王淑君. 吉林省白山地区硅藻土矿基本特征及应用[J]. 吉林地质, 2008, 27(1):25-29.HE Y X, GAO L Y, WANG S J. Basic characteristics and utilization of diatomite ore in Baishan region Jilin Province[J]. Jilin Geology, 2008,27(1):25-29.
[8] 宋竹琴. 吉林省东部聚煤盆地硅藻土资源综合评价[J]. 中国煤田地质, 1995, 7(1):52-54.SONG Z Q. Comprehensive evaluation of diatomite resources in eastern coal-gathering basin of Jilin Province[J]. Coal Geology of China,1995, 7(1):52-54.
[9] 褚平利, 段政, 余明刚, 等. 陆相火山岩区火山机构的识别——以浙江新昌东茗复活破火山为例[J]. 地质通报, 2022, 41(2/3):361-373.CHU P L, DUAN Z, YU M G, et al. Identification in continental volcanic areas-A case study of the Dongming resurgent caldera in Xinchang, Zhejiang provience[J]. Geological Bulletin of China, 2022, 41(2/3):361-373.
[10] YU X, CHEN L H, ZENG G. Growing magma chambers control the distribution of small-scale flood basalts[J]. Scientific Reports, 2015, 5(1):1-8.
[11] 黄成彦, 蔡祖仁. 浙江中新世嵊县组的硅藻植物群[J]. 古生物学报, 1984, 23(3):358-372.HUANG C Y, CAI Z R. Diatom floras in the Miocene Shexian Formation of Shengxian, Zhejiang Provience[J]. Acta Paleontologica Sinica, 1984, 23(3):358-372.
[12] LI R, SUN B, WANG Q, et al. Two new Castanopsis (Fagaceae) species based on cupule and foliage from the upper Miocene of eastern Zhejiang, China[J]. Plant Systematics and Evolution, 2015, 301(1):25-39.
[13] LI X, MA F, XIAO L, et al. New records of Podocarpium A. Braun ex Stizenberger (Fabaceae) from the Oligocene to Miocene of China:Reappraisal of the phylogeographical history of the genus[J]. Review of Palaeobotany and Palynology, 2019, 260:38-50.
[14] 褚平利, 段政, 余明刚, 等. 1:5万嵊县幅区域地质调查报告[R]. 南京:中国地质调查局南京地质调查中心, 2016:120-125.CHU P L, DUAN Z, YU M G, et al. 1:50000 regional geologic report of Shengxian sheet[R]. Nanjing:Nanjing Center, China Geologic Survey, 2016:120-125.
[15] SMIRNOV P V, KONSTANTINOV A O, GURSKY H J. Petrology and industrial application of main diatomite deposits in the Transuralian region (Russian Federation)[J]. Environmental Earth Sciences, 2017, 76(20):1-19.
[16] XIONG Z, LI T, ALGEO T, et al. Rare earth element geochemistry of laminated diatom mats from tropical West Pacific:Evidence for more reducing bottom waters and higher primary productivity during the Last Glacial Maximum[J]. Chemical Geology, 2012, 296:103-118.
[17] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.
[18] 陈荣, 褚平利, 曾建威, 等. 中国地质调查局南京地质调查中心. 1:50000崇仁幅区域地质调查报告[R]. 南京:中国地质调查局南京地质调查中心, 2010:50-125.CHEN R, CHU P L, ZENG J W, et al. China geologic Survey, Nanjing Center. Regional geology of Chongren Sheet (1:50000)[R]. Nanjing:Nanjing Center, China geologic Survey, 2010:50-125.
[19] WALLACE A R, FRANK D G, FOUNIE A. Freshwater diatomite deposits in the western United States[M]. US Department of the Interior, US Geological Survey, 2006.
[20] INGLE JR J C. Origin, depositional history, and correlation of Miocene diatomites around North Pacific margin[J]. AAPG Bulletin, 1981, 65(5):940-940.
[21] 丁瑞. 敦化市高松树硅藻土矿床地质特征及成因[J]. 中国非金属矿工业导刊, 2014(4):41-43.DING R. Geological characteristics and genesis of gaoshu Diatomite deposit in Dunhua city[J]. China Non-Metallic Minerals Industry, 2014(4):41-43.
[22] PEDERSEN S A S. Palaeogene diatomite deposits in Denmark:geological investigations and applied aspects[J]. GEUS Bulletin, 2008, 15:21-24.
[23] 潘标开, 宁思远, 弓帅, 等. 雷琼地区硅藻土矿床地质特征与成矿规律[J]. 中国非金属矿工业导刊, 2021(1):39-42.PAN B K, NING S Y, GONG S, et al. Geological Characteristics and Metallogenic Regularity of Diatomite Deposit in Leiqiong Area[J]. China Non-Metallic Minerals Industry, 2021(1):39-42.
[24] LAMB A L, BREWER T S, LENG M J, et al. A geochemical method for removing the effect of tephra on lake diatom oxygen isotope records[J]. Journal of Paleolimnology, 2007, 37(4):499-516.
[25] 冯璜, 张惠芬. 雷州半岛硅藻土中的硅藻及其化学成分[J]. 矿物学报, 1995, 15(1):29-35.FENG H, ZHANG H F. Genera, Species and Chemical compositions of diatoms from Guangdong Province[J]. Acta Mineralogica Sinica, 1995, 15(1):29-35.
[26] SMIRNOV P V, KONSTANTINOV A O, BATALIN G A, et al. Variability in distribution of major and trace elements in Lower Eocene siliceous sections of the Transuralian Region, Russia[J]. Acta Geochimica, 2019, 38(2):262-276.
[27] LUDDEN J N, THOMPSON G. An evaluation of the behavior of the rare earth elements during the weathering of sea-floor basalt[J]. Earth and Planetary Science Letters, 1979, 43(1):85-92.
[28] EGGLETON R A, FOUDOULIS C, VARKEVISSER D. Weathering of basalt:changes in rock chemistry and mineralogy[J]. Clays and Clay Minerals, 1987, 35(3):161-169.
[29] PRICE R C, GRAY C M, WILSON R E, et al. The effects of weathering on rare-earth element, Y and Ba abundances in Tertiary basalts from southeastern Australia[J]. Chemical Geology, 1991, 93(3/4):245-265.
[30] NESBITT H W. Mobility and fractionation of rare earth elements during weathering of a granodiorite[J]. Nature, 1979, 279(5710):206-210.
[31] SU N, YANG S, GUO Y, et al. Revisit of rare earth element fractionation during chemical weathering and river sediment transport[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(3):935-955.
[32] DOS MUCHANGOS A C. The mobility of rare-earth and other elements in the process of alteration of rhyolitic rocks to bentonite (Lebombo Volcanic Mountainous Chain, Mozambique)[J]. Journal of Geochemical Exploration, 2006, 88(1/3):300-303.
[33] TWEED S, LEBLANC M, CARTWRIGHT I. Groundwater-surface water interaction and the impact of a multi-year drought on lakes conditions in South-East Australia[J]. Journal of Hydrology, 2009, 379(1/2):41-53.
[34] SIEBERT C, ROSENTHAL E, M?LER P, et al. The hydrochemical identification of groundwater flowing to the Bet She’an-Harod multiaquifer system (Lower Jordan Valley) by rare earth elements, yttrium, stable isotopes (H, O) and Tritium[J]. Applied Geochemistry, 2012, 27(3):703-714.
[35] TAYLOR S R, MCLENNAN S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2):241-265.
[36] WANG A, WANG Z, LIU J, et al. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta[J]. Chemical Geology, 2021, 559:119923.
[37] JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4):111-129.
[38] NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885):715-717.
[39] LI C, YANG S. Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins?[J]. American Journal of Science, 2010, 310(2):111-127.
[40] WRONLIEWICZ D J, CONDIE K C. Geochemistry of Archean shales from the Witwatersr and Supergroup, South Africa:Source-area weathering and provenance[J]. Geochemica et Cosmochimica Acta, 1987, 51:2401-2416.
[41] FLOYD P A, LEVERIDGE B E. Tectonic Environment of Devonia Gramscatho basin,South Cornwall:Framework mode and geochemical evidence from turbiditic sandstones[J]. Geological Society of London Journal, 1987, 144:531-542.
[42] KOIZUMI I, YAMAMOTO H. Diatomooze and diatomite-diatomaceous sediments in and around the North Pacific Ocean[J]. JAMSTEC Report of Research and Development, 2018, 27:26-46.
[43] LAMB S, DAVIS P. Cenozoic climate change as a possible cause for the rise of the Andes[J]. Nature, 2003, 425(6960):792-797.
[44] 李明涛, 孙柏年, 肖良, 等. 浙东中新世Betula mioluminifera Hu et Chaney的发现及古气候重建[J]. 地球科学进展, 2008, 23(6):651.LI M T, SUN B N, XIAO L, et al. Discovery of Betula mioluminifera Hu et Chaney from the Miocene in Eastern Zhejiang and reconstruction of paleoclimate[J]. Advance in Earth Science, 2008, 23(6):651.
[45] 丁素婷, 孙柏年, 吴靖宇, 等. 浙江天台中新统润楠属化石及其古环境指示[J]. 地球科学, 2012, 37(1):35-46.DING S T, SUN B N, WU J Y, et al. Machilus fossil from Miocene in Tiantai, Zhejiang province, China, and its paleoenviromental implication. Earth Science-Journal of China University of Geosciences, 2012, 37(1):35-46.
[46] 何文龙. 浙江宁海-天台地区中新世植物化石及气候变化[D]. 兰州:兰州大学, 2013.HE W L. Miocene plant fossils and climate change in Ninghai-Tiantai area, Zhejiang Province[D]. Lanzhou:Lanzhou University, 2013.
[47] 任文秀, 孙柏年, 肖良. 浙江宁海下南山组晚中新世古海拔与古气候定量重建[J]. 微体古生物学报, 2010, 27(1):93-98.REN W X, SUN B N, XIAO L. Quantitative reconstruction on paleoelevation and paleoclimate of Miocene Xiananshan Formation in Ninghai, Zhejiang province[J]. Acta Micropalaeontologica Sinica, 2010, 27(1):93-98.
[48] 陈丕基. 晚白垩世中国东南沿岸山系与中南地区的沙漠和盐湖化[J]. 地层学杂志, 1997, 21(3):203-213.CHEN P J. Coastal Mountains of SE China desertization and saliniferous lakes of Central China during the Upper Cretaceous[J]. Journal of Stratigraph, 1997, 21(3):203-213.
[49] 姜磊, 邓宾, 刘树根, 等. 上扬子盆地新生代差异抬升剥蚀与分异过程[J]. 地球科学, 2018, 43(6):1872-1886.JIANG L, DENG B, LIU S G, et al. Differential uplift and fragmentation of upper Yangtze Basin in Cenozoic[J]. Earth Science, 2018, 43(6):1872-1886.
[50] HALL R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific:computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4):353-431.
[51] 索艳慧, 李三忠, 曹现志, 等. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J]. 地学前缘-中国地质大学(北京), 2017, 24(4):249-276.SU Y H, LI S Z, CAO X Z, et al. Mesozoic-Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate[J]. Earth Science Frontiers, 2017, 24(4):249-276.
[52] 汪品先. 新生代亚洲形变与海陆相互作用[J]. 地球科学:中国地质大学学报, 2005, 30(1):1-18.WANG P X. Cenozoic Deformation and History of Sea-Land Interactions in Asia[J]. Earth Science-Journal of China University of Geosciences, 2005, 30(1):1-18.
[53] 姚伯初, 万玲, 吴能友. 大南海地区新生代板块构造活动[J]. 中国地质, 2004, 31(2):113-122.YAO B C, WAN L, WU N Y. Cenozoic plate tectonic activities in the Great South China Sea area. China Geology, 2004, 31(2):113-122.
[54] XU S M, YE Q, LI S, et al. Sequential patterns in Cenozoic marginal basins of the Northwest Pacific[J]. Geological Journal, 2016, 51:387-415.
[55] 王照波, 王江月, 李宝杰. 吉林长白山天池第四纪火山旋回性喷发与冰川作用的耦合关系[J]. 华东地质, 2020, 41(2):108-115.WANG Z B, WANG J Y, LI B J. Coupling relation between cyclic eruption of Quaternary volcano and ancient glacier in Tianchi, Changbai Mts[J]. East China Geology, 2020, 41(2):108-115.

备注/Memo

备注/Memo:
收稿日期:2022-06-01;改回日期:2022-09-28。
基金项目:中国地质调查局"华东地区区域基础地质调查(编号:DD20221633)"项目资助。
作者简介:洪文涛,1986年生,助理研究员,硕士,主要从事华南火山岩和区域大地构造研究。Email:742836882@qq.com。
更新日期/Last Update: 1900-01-01