[1]倪斌,黄照强,郭健,等.基于机载和星载高光谱遥感的武夷山成矿带蚀变矿物信息识别研究[J].华东地质,2023,44(01):67-81.[doi:10.16788/j.hddz.32-1865/P.2023.01.006]
 NI Bin,HUANG Zhaoqiang,GUO Jian,et al.Identification of altered mineral information in the Wuyishan metallogenic belt based on airborne and spaceborne hyperspectral remote sensing[J].East China Geology,2023,44(01):67-81.[doi:10.16788/j.hddz.32-1865/P.2023.01.006]
点击复制

基于机载和星载高光谱遥感的武夷山成矿带蚀变矿物信息识别研究()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
44
期数:
2023年01期
页码:
67-81
栏目:
重要矿产资源专辑
出版日期:
2023-04-15

文章信息/Info

Title:
Identification of altered mineral information in the Wuyishan metallogenic belt based on airborne and spaceborne hyperspectral remote sensing
作者:
倪斌1 黄照强1 郭健1 邢光福2 张亚龙1 牛斯达1
1. 中国冶金地质总局矿产资源研究院, 北京 101300;
2. 中国地质调查局南京地质调查中心, 江苏南京 210016
Author(s):
NI Bin1 HUANG Zhaoqiang1 GUO Jian1 XING Guangfu2 ZHANG Yalong1 NIU Sida1
1. Institute of Mineral Resources Research, China Metallurgical Geology Bureau, Beijing 101300, China;
2. Nanjing Center, China Geological Survey, Nanjing, 210016, Jiangsu, China
关键词:
永泰—德化—尤溪矿集区SASIGF-5光谱角填图法蚀变矿物
Keywords:
Yongtai-Dehua-Youxi ore concentration areaSASIGF-5Spectral angle mapping methodalteration minerals
分类号:
P61P627
DOI:
10.16788/j.hddz.32-1865/P.2023.01.006
摘要:
武夷山成矿带是中国东部中生代火山岩区重要的金铜多金属成矿带之一。为进一步对武夷山成矿带的岩矿蚀变信息进行识别与对比研究,该文利用机载航空高光谱SASI短波红外数据和星载高分五号(GF-5)高光谱数据,在充分分析不同蚀变矿物的实测波谱典型吸收特征和矿化蚀变信息识别提取方法的基础上,基于迪开石、高岭石、石膏、铁绿泥石、铁镁绿泥石、镁绿泥石等6种蚀变矿物的实测光谱特征,应用光谱角填图法(Spectral Angle Mapper,SAM)对闽中永泰—德化—尤溪矿集区的两类高光谱影像的蚀变矿物信息进行自动匹配识别和信息提取。研究表明:1 两类高光谱数据都能较好地提取出上述6种典型蚀变矿物的分布范围,且结合地质资料能够推测出火山机构,暗示了较好的找矿前景;2 通过对提取的蚀变矿物信息的效果和特征进行对比研究,并经野外实测岩矿样品的光谱验证,SASI数据提取的蚀变矿物信息与实际验证点吻合更多;3 通过对比分析,发现应用高空间分辨率SASI数据的蚀变矿物信息提取结果较空间分辨率较低的GF-5数据更加稠密和精确,与空间分辨率越低,像素光谱混合越明显、地物精细区分程度也相对较差的常规认识相吻合。由于该研究中光谱验证点相对较少,且矿物种类有限,同时原始空间分辨率不同等因素,评价结果还需作进一步验证。
Abstract:
Wuyishan metallogenic belt is one of the important gold-copper polymetallic metallogenic belts in Mesozoic volcanic rock area in eastern China. To further identify and compare the alteration information of rocks and minerals in the Wuyishan metallogenic belt, with the airborne hyperspectral SASI short-wave infrared data and the space-borne Gaofen No.5 (GF-5) hyperspectral data, based on the analysis of the typical absorption characteristics of the measured spectra for different altered minerals and the recognition and extraction methods of mineralized alteration information, as well the measured spectral characteristics of six altered minerals, namely, dickite, kaolinite, gypsum, chlorite_Fe, chlorite_FeMg, chlorite_Mg, the authors applied Spectral Angle Mapper (SAM) to automatic matched, identify and extract the altered mineral information of hyperspectral images in Yongtai-Dehua-Youxi ore concentration area of central Fujian. The research shows that: 1 Combined with geological data, the two kinds of hyperspectral data can well define the distribution range of the above six typically altered minerals and infer the volcanic structure, suggesting a good prospecting prospect; 2 The comparative study on effect and characteristics of the extracted altered mineral information and the spectral verification of samples in the field indicate the altered mineral information extracted from the SASI data is more consistent with the actual verification point; 3 Through the comparative analysis, it is found that the extraction results of altered mineral information using high spatial resolution SASI data is denser and more accurate than the GF-5 data with low spatial resolution, which is consistent with the conventional understanding that the lower spatial resolution, the more obvious pixel spectral mixing, and the poorer the fine distinction of ground objects. Due to the relatively few spectral verification points, the limited mineral species, and the different original spatial resolution in this study, the evaluation results need to be further verified.

参考文献/References:

[1] 童庆禧,张兵,郑兰芬. 高光谱遥感——原理、技术与应用[M]. 北京:高等教育出版社, 2006:390-400.TONG Q X, ZHANG B, ZHENG L F. Hyperspectral Romote Sensing[M]. Beijing:Higher Education Press, 2006:390-400.
[2] 张兵. 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016,20(5):1062-1090.ZHANG B. Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote Sensing, 2016, 20(5):1062-1090.
[3] 李根军,杨雪松,张兴,等.ZY1-02D高光谱数据在地质矿产调查中的应用与分析[J].国土资源遥感,2021,33(2):134-140.LI G J,YANG X S,ZHANG X,et al. Application and analysis of ZY1-02D hyperspectral data in geological and mineral survey[J]. Remote Sensing for Land and Resources, 2021, 33(2):134-140.
[4] 李娜,董新丰,甘甫平,等.高光谱遥感技术在基岩区区域地质调查填图中的应用[J].地质通报, 2021,40(1):13-21.LI N, DONG X F, GAN F P, et al. Application of hyperspectral remote sensing technology in regional geological survey and mapping of bedrock area[J]. Geological Bulletin of China, 2021, 40(1):13-21.
[5] 董新丰,甘甫平,李娜,等.高分五号高光谱影像矿物精细识别[J].遥感学报, 2020, 24(4):454-464.DONG X F, GAN F P, LI N, et al. Fine mineral identification of GF-5 hyperspectral image[J]. Journal of Remote Sensing, 2020, 24(4):454-464.
[6] 连琛芹,姚佛军,陈懋弘,等. GF-5高光谱数据在植被覆盖区的蚀变信息提取研究——以广东省玉水铜矿为例[J].现代地质, 2020, 34(4):680-686.LIAN C Q, YAO F J, CHEN M H, et al. The Study on Alteration Information Extraction of GF-5 Hyperspectral Data in Vegetation Coverage Area:A Case Study of the Yushui Copper Deposit in Guangdong Province[J]. Geoscience, 2020, 34(4):680-686.
[7] 孙雨,刘家军,赵英俊,等.航空高光谱CASI-SASI数据蚀变矿物信息提取与应用——以甘肃省敦煌市小金窝子地区为例[J].地质与勘探,2022,58(3):653-664.SUN Y, LIU J J, ZHAO Y J, et al. Eatraction of alteration minerals based on the airborne hyperspcetral CASI-SASI data and the application to the Xiaojinwozi area in Dunhuang City, Gansu Province[J].Geology and Exploration, 2022,58(3):653-664.
[8] 孙雨,刘家军,赵英俊,等. 基于GF-5高光谱数据的蚀变矿物填图及地质应用——以甘肃省瓜州县花牛山地区为例[J].中国地质, 2022, 49(2):558-574.SUN Y, LIU J J, ZHAO Y J, et al. Alteration minerals mapping and its geological application based on GF-5 hyperspectral data-taking the Huaniushan area in Guazhou County of Gansu Province as an example[J].Geology in China,2022,49(2):558-574.
[9] ZHOU Y,CHEN S Z,LI L M,et al. Mapping hydrothermal alteration of the Au-Cu deposits in the Zhenghe magmatic-hydrothermal mineralization system, SE China, using Short Wavelength Infrared (SWIR) reflectance spectroscopy[J]. Journal of Geochemical Exploration, 2023, 244:107113.
[10]倪斌,黄照强,江淼,等.基于CASI & SASI航空高光谱的雄安新区西南部农田土壤重金属镍含量反演研究[J].地质与勘探,2022,58(6):1307-1320.NI B, HUANG Z Q, JIANG M, et al. Retrieval of heavy metal nickel content in farmland soil in the southwest of Xiong’an New District based on aerial hyperspectral CASI & SASI data[J]. Geology and Exploration, 2022,58(6):1307-1320.
[11]袁静文,武辰,杜博,等.高分五号高光谱遥感影像的城市土地利用景观格局分析[J].遥感学报, 2020, 24(4):465-478.YUAN J W, WU C, DU B, et al. Analysis of landscape pattern on urban land use based on GF-5 hyperspectral data[J]. Journal of Remote Sensing, 2020, 24(4):465-478.
[12]黄林峰,李雪,廖瑶,等. 基于GF5高光谱影像水体叶绿素a浓度估算分析——以贵州晴隆光照湖为例[J].中低纬山地气象, 2021,45(1):29-32.HUANG L F, LI X, LIAO Y, et al. Estimation and Analysis of the Concentration of Water Chlorophyll-a Based on GF5 Hyperspectral Image-Take Qinglong Guangzhao Lake in Guizhou Province as an Example[J]. Mid-low Latitude Mountain Meteorology, 2021, 45(1):29-32.
[13]顾佳艳,何国富,占玲骅,等.基于高光谱遥感的上海市黑臭水体特征水质指标反演模型构建[J]. 环境污染与防治,2022,44(8):1030-1034.GU J Y, HE G F, ZHAN L Y, et al. Construction of retrieval model for characteristic water quality in dicators of black and odorouswater in Shanghai based on hyperspectral remote sensing[J].Environmental Pollution & Control, 2022,44(8):1030-1034.
[14]HUNT G R. Near-infrared (1.3-2.4) um spectra of alteration minerals-potential for use in remote sensing[J]. Geophysics, 1979, 44(12):1974-1986.
[15]CLARK R N, SWAYZE G A, WISE R, et al. USGS digital spectral library splib06a[R]. Reston, VA:US Geological Survey, 2007.
[16]燕守勋,张兵,赵永超,等.矿物与岩石的可见-近红外光谱特性综述[J].遥感技术与应用, 2003, 18(4):191-201.YAN S X, ZHANG B, ZHAO Y C, et al. Summarizing the VIS-NIR Spectra of Minerals and Rocks[J].Remote Sensing Technology and Application, 2003,18(4):191-201.
[17]叶发旺,刘德长,赵英俊.CASI/SASI航空高光谱遥感测量系统及其在铀矿勘查中的初步应用[J]. 世界核地质科学,2011,28(4):231-236.YE F W, LIU D C, ZHAO Y J.Airborne hyper-spectral survey system CASI/SASI and its preliminary application in uranium exploration[J]. World Nuclear Geoscience, 2011, 28(4):231-236.
[18]杨清华,吴小娟,肖政浩,等.CASI/SASI航空高光谱遥感矿物技术研究——以甘肃北山柳园地区为例[J]. 地质力学学报, 2015,21(2):241-251.YANG Q H, WU X J, XIAO Z H, et al. Technology Research on Mineral Extraction by Using CASI/SASI Airborne Hyperspectral Data[J]. Journal of Geomechanics, 2015, 21(2):241-251.
[19]张川,叶发旺,徐清俊,等.新疆白杨河铀铍矿区航空高光谱矿物填图及蚀变特征分析[J].国土资源遥感, 2017, 29(2):160-166.ZHANG C, YE F W, XU Q J, et al. Mineral mapping and analysis of alteration characteristics using airborne hyperspectral remote sensing data in the Baiyanghe uranium and beryllium ore district,Xinjiang[J]. Remote Sensing for Land and Resources, 2017, 29(2):160-166.
[20]WANG M W, HUANG Z Q, ZHANG X Y, et al. Altered mineral mapping based on ground-airborne hyperspectral data and wavelet spectral angle mapper tri-training model:Case studies from Dehua-Youxi-Yongtai Ore District, Central Fujian, China. International Journal of Applied Earth Observations and Geoinformation,2021, 102:102409.
[21]NIU S D, GUO J, XING G F, et al. Magmatism, geological setting, alteration, and metallogenic potential of Donghua area, Dehua County, Fujian Province, Southeast China:Insights from porphyry zircon U-Pb and pyrite Rb-Sr geochronology, geochemistry and remote sensing. Ore Geology Reviews, 2020, 126:103726.
[22]阚明哲,田庆久,张宗贵.新疆哈密三种典型蚀变矿物的HyMap高光谱遥感信息提取[J].国土资源遥感,2005,17(1):37-40.KAN M Z, TIAN Q J, ZHANG Z G. The Extraction of Hymap Hyperspectral Remote Sensing Information from Three Typical Altered Minerals in Hami Area, Xin Jiang[J].Remote Sensing for Land and Resources, 2005, 17(1):37-40.
[23]苏余斌. 基于实测波谱的CASI/SASI数据矿物蚀变信息提取研究[D].武汉:武汉理工大学, 2015.SU Y B. Research on the Information Extraction of Alteration Minerals by Using CASI/SASI Hyperspectral Data Based on Measured Spectra[D].Wuhan:Wuhan University of Technology, 2015.
[24]HAEST M, CUDAHY T, RODGER A, et al. Unmixing the effects of vegetation in airborne hyperspectral mineral maps over the Rocklea Dome iron-rich palaeochannel system (Western Australia). Remote Sensing of Environment, 2013, 129:17-31.
[25]黄照强,倪斌. 基于随机变异-Kennard-Stone和偏最小二乘法的土壤重金属镉含量反演——以雄安新区西南部为例. 地质论评, 2021,67(5):1521-1532.HUANG Z Q, NI B. Retrieval of soil heavy metal Cadmium content based on Random Mutation, Kennard-Stone and partial least squares method:A case study of southwest of Xiong’an New District[J]. Geological Review, 2021,67(5):1521-1532.
[26]袁慧香, 陈辉. 福建德化地区找矿进展及金矿成矿特征[J]. 矿物学报, 2015(S1):1055.YUAN H X, CHEN H. Prospecting Progress and metallogenic characteristics of gold deposits in Dehua area, Fujian Province[J]. Acta Mineralogica Sinica, 2015(S1):1055.
[27]陈龙照,吴志山.福建尤溪龙门场银金多金属矿床地质特征及成因初探[J].福建地质,2010(4):302-307.CHEN L Z, WU Z S. Peliminary Study of the Genesis and the Geologic Characteristics of the Longmenchang Silver-gold Polymetal lic Deposit in Youxi County, Fujian Province[J]. Geology of Fujian, 2010(4):302-307.
[28]毛建仁,叶海敏,赵希林,等. 武夷山成矿带构造-岩浆-成矿作用与演化[J]. 矿床地质, 2010,29(S1):18-19.MAO J R, YE H M, ZHAO X L,et al. Tectonic magmatic metallogenesis and evolution of Wuyishan metallogenic belt[J]. Acta Mineralogica Sinica, 2010, 29(S1):18-19.
[29]樊康.福建省德化县邱村金矿地质特征及找矿方向[J].现代矿业, 2015,31(12):84-86.FAN K. Geological Characteristics and Prospecting Direction of Qiucun Gold Mine in Dehua County,Fujian Province[J]. Modern Mining, 2015,31(12):84-86.
[30]黄宝,倪培,项洪亮,等.福建邱村金矿地质特征及矿床成因[J].矿物岩石地球化学通报, 2017,36(4):650-659.HUANG B, NI P, XIANG H L, et al. The Geological Characteristics and Ore Genesis of the Qiucun Gold Deposit,Fujian Province[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2017, 36(4):650-659.
[31]陈龙照,吴志山.福建省德化县青云山铜金矿地质特征及找矿方向[J]. 地质找矿论丛, 2006, 21(S1):30-33.CHEN L Z, WU Z S. Geological Characteristics and Ore-Searching Directions of Qin Yunshan Copper Gold Deposit, DeHua County,Fujian Province[J].Contributions to Geology and Mineral Resources Research, 2006,21(S1):30-33.
[32]刘宗成.福建省德化县肖坂-双旗山矿区韧性剪切带型金矿床成因初探[J].福建冶金, 2017,46(3):1-3,8.LIU Z C. Genesis of ductile shear zone type gold deposit in Xiaoban-Shuangqishan mining area, Dehua County, Fujian Province[J]. Fujian Metallurgy, 2017, 46(3):1-3,8.
[33]江启煜.福建德化东洋矿区金矿的发现与找矿意义[J].地质学刊, 2015, 39(2):301-305.JIANG Q Y. The discovery and prospecting significance of gold deposits in Dongyang mining area of Dehua, Fujian Province[J]. Journal of Geology, 2015, 39(2):301-305.
[34]汪新庆,史超,王群.基于混合像元分解的高植被覆盖区蚀变信息提取——以福建上杭紫金山矿田为例[J].地质找矿论丛, 2014,29(1):96-101.WANG X Q, SHI C, WANG Q. Mixed pixel unmixing-based alteration information extraction from heavy vegetation areas:A Case of Zijinshan Moutain ore field Shanghang, Fujian[J]. Contributions to Geology and Mineral Resources Research, 2014, 29(1):96-101.
[35]李浩杰,常晓珂.基于Landsat-8 OLI数据的遥感蚀变信息提取与分析——以金塔大红山地区为例[J].甘肃科技,2015,31(13):16-19.LI H J, CHANG X K. Extraction and analysis of remote sensing alteration information based on Landsat-8 OLI data-Taking Dahongshan area of Jinta as an example[J]. Gansu Science and Technology, 2015, 31(13):16-19.
[36]王柯,戴晓爱,王乾,等.基于CASI/SASI高光谱影像的几何校正方法及误差分析[J].河南科学, 2018,36(9):1336-1342.WANG K, DAI X A, WANG Q, et al. Geometric Correction Method and Error Analysis Based on Hyperspectral Image[J]. Henan Science,2018,36(9):1336-1342.
[37]邓书斌.ENVI遥感影像处理方法[M].北京:科学出版社,2014:297-308.DENG S B. ENVI remote sensing image processing method[M]. Beijing:Science Press, 2014:297-308.
[38]刘华尧,李舟,潘真,等.基于TM影像的FLAASH模块大气纠正及评价[J].城市勘测, 2013(5):63-66.LIU H Y, LI Z, PAN Z, et al. FLAASH Module Atmospheric Correction and Evaluation Based on TM Image[J].Urban Geotechnical Investigation&Surveying, 2013(5):63-66.
[39]叶发旺,王建刚,邱骏挺,等.面向地质应用的航空高光谱CASI-SASI数据大气校正方法对比研究[J].光谱学与光谱分析,2019,39(9):2677-2685.YE F W, WANG J G, QIU J T, et al. A Geological Application Oriented Comparison Research on Different Atmospheric Correction Methods for Airborne CASI-SASI Hyperspectral Data[J].Spectroscopy and Spectral Analysis, 2019,39(9):2677-2685.
[40]梁树能,甘甫平,闫柏琨,等.绿泥石矿物成分与光谱特征关系研究[J].光谱学与光谱分析, 2014,34(7):1763-1768.LIANG S N, GAN F P, YAN B K, et al. A Study on the Relationship between the Composition and Spectral Feature Parameters in Chlorite[J].Spectroscopy and Spectral Analysis, 2014, 34(7):1763-1768.
[41]丛利民,李国志,王登科,等.光谱角技术在多光谱遥感蚀变异常提取工作中的应用[J].化工矿产地质, 2009,31(4):242-246.CONG L M, LI G Z, WANG D K, et al. The Application of SAM Teachnique on Extracting Alteration Abnormities from Multispectral RS Data[J].Geology of Chemical Minerals, 2009, 31(4):242-246.
[42]付洪波.基于光谱角制图法的遥感异常信息提取[J].测绘与空间地理信息, 2011,34(6):82-84.FU H B. Abnormal Information Extraction from Remote Sensing Image Based on Spectral Angle Mapping[J].Geomatics & Spatial Information Technology, 2011,34(6):82-84.
[43]余先川,熊利平,张立保,等.遥感技术在地质找矿中的应用[J].地质学刊,2015,39(2):263-276.YU X C, XIONG L P, ZHANG L B, et al. Application of remote sensing technology in geological prospecting[J]. Journal of Geology, 2015, 39(2):263-276.
[44]BOARDMAN J W. Leveraging the high dimensionality of AVIRIS data for improved sub-pixel target unmixing and rejection of false positives:mixture tuned matched filtering.Summaries of the Seventh Annual JPL Airborne Geoscience Workshop, 1998:55.
[45]林娜,杨武年,刘汉湖.基于高光谱遥感的岩矿端元识别及信息提取研究[J].遥感信息, 2011(5):114-117,99.LIN N, YANG W N, LIU H H. Mineral Endmember Identification and Information Extraction Based on Hyperspectral Remote Sensing[J]. Remote Sensing Information, 2011(5):114-117,99.
[46]梁丹迪,周可法,王珊珊,等. 不同空间分辨率高光谱遥感数据对蚀变矿物信息提取的影响[J]. 地质科技情报, 2019,38(3):282-289.LIANG D D, ZHOU K F, WANG S S, et al. Effects of Different Spatial Resolution Hyperspectral Remote Sensing Data on the Extraction of Alteration Minerals Information[J]. Geological Science and Technology Information, 2019, 38(3):282-289.

备注/Memo

备注/Memo:
收稿日期:2022-11-11;改回日期:2023-2-16。
基金项目:国家重点研发计划"武夷德化—尤溪—永泰矿集区矿物地球化学勘查研究(编号:2016YFC0600210)"、中国冶金地质总局科技创新项目"高光谱遥感资源生态环境评价方法与技术研究(编号:CMGB202001)"、中国冶金地质总局矿产资源研究院科技创新"武夷地区高光谱生态地质环境研究"和"基于CASI/SASI航空高光谱数据的生态环境地物特征提取方法研究"项目联合资助。
作者简介:倪斌,1989年生,男,工程师,硕士,主要从事遥感地质分析研究。Email:nibin0538@163.com。
通讯作者:黄照强,1973年生,男,正高级工程师,博士,主要从事高光谱遥感与遥感地质研究。Email:hzhaoq@126.com。
更新日期/Last Update: 1900-01-01