[1]刘春雷,李亚松,曹胜伟,等.福建省厦门市水热型地热系统地球化学特征及成因模式[J].华东地质,2023,44(02):128-140.[doi:10.16788/j.hddz.32-1865/P.2023.02.002]
 LIU Chunlei,LI Yasong,CAO Shengwei,et al.Geochemical characteristics and genetic model of hydro-geothermal system in Xiamen City, Fujian Province[J].East China Geology,2023,44(02):128-140.[doi:10.16788/j.hddz.32-1865/P.2023.02.002]
点击复制

福建省厦门市水热型地热系统地球化学特征及成因模式()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
44
期数:
2023年02期
页码:
128-140
栏目:
水资源专题
出版日期:
2023-06-17

文章信息/Info

Title:
Geochemical characteristics and genetic model of hydro-geothermal system in Xiamen City, Fujian Province
作者:
刘春雷12 李亚松12 曹胜伟12 李剑锋12 王婉丽13
1. 中国地质科学院水文地质环境地质研究所, 河北 石家庄 050061;
2. 福建省水循环与生态地质过程重点实验室, 福建 厦门 361000;
3. 自然资源部地热与干热岩勘查开发技术创新中心, 河北 石家庄 050061
Author(s):
LIU Chunlei12 LI Yasong12 CAO Shengwei12 LI Jianfeng12 WANG Wanli13
1. The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science, Shijiazhuang 050061, Hebei, China;
2. Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361000, Fujian, China;
3. Technology Innovation Center of Geothermal & Hot Dry Rock Exploration and Development, Ministry of Natural Resources, Shijiazhuang 050061, Hebei, China
关键词:
地热水环境同位素地球化学地热温标海水补给福建省厦门市
Keywords:
geothermal waterenvironmental isotopegeochemical geothermometerseawater rechargeXiamen City Fujian Province
分类号:
P592
DOI:
10.16788/j.hddz.32-1865/P.2023.02.002
摘要:
福建省厦门市滨海地区海水补给型地热系统虽然补给资源量很大,但是存在水质咸化、温度较低、地热水开采可能诱发海水入侵等问题,因此,查明该区地热资源成因模式,对地热资源合理开发、利用及保护具有重要意义。通过在厦门市地热田采集地热水、地下水及地表水样品,运用水化学及环境同位素分析方法,研究地热水化学特征及地热资源的成因机制。结果表明:厦门市山区及山前地带地热水的补给来源主要是山区降雨入渗,以TDS较低的HCO3·SO4-Ca·Na型水为主;沿海地区地热水的补给来源主要是不同程度的海水混入,以TDS较高的Cl-Na型水为主。根据Cl-混合模型特征,发现该区13处地热田中有10处地热田受到海水混入补给,其中浦边地热水的海水混入比达73.20%。地热水由低山区沿NW向断裂向深部运移,与区域NE向深大控热断裂交汇,接受深部传导热量后形成深部热储层,温度为185~225 ℃;地热水沿断裂带上升过程中有海水或地下冷水混入,混入后的浅层热储温度为80~139 ℃。综合分析认为,厦门沿海地区海水是地热水的重要补给资源,地热水化学组分受海水混合作用影响明显,存在两次或多次地下冷水或海水的混入,降低了地下热储温度。
Abstract:
The seawater-recharged geothermal system in the coastal areas of Xiamen City has abundant recharge source, however, the geothermal water is always saline and low-temperature, and the exploitation of geothermal water in these areas may even incur seawater intrusion. Therefore, to ascertain the hydro-chemical characteristics and genetic mechanisms of the geothermal resources is significant for the rational exploitation and protection of these resources. In this study, the chemical and isotopic compositions of the geothermal water, cold groundwater, and surface water samples collected from a geothermal field were analyzed. The results showed that in the mountainous and the piedmont zones of Xiamen City, geothermal water is mainly recharged by the precipitation and is dominated by HCO3·SO4-Ca·Na water with low TDS content. By contrast, the geothermal water in the coastal areas is mainly recharged by seawater mixed to different degrees and is dominated by hydro-chemical type of Cl-Na with high TDS content. Based on the characteristics of the Cl-mixing model of 13 geothermal fields in Xiamen, 10 geothermal fields are recharged by seawater, among which the maximum seawater mixing ratio in geothermal water is 73.20% in Pubian area. The geothermal water infiltrates in the low mountainous areas and is transported through NW-trending faults to regional deep-rooted geothermal-controlling NE faults, where the geothermal water receives the heat conducted from deeper parts. The temperature of the deep geothermal reservoirs was estimated from 185 ℃ to 225 ℃. While rising along faults, geothermal water was recharged by seawater and cold groundwater, creating shallow geothermal reservoirs with temperatures from 80 ℃ to 139 ℃. As indicated by the comprehensive analysis, seawater is an important recharge resource for geothermal water in the study area and significantly influenced the chemical components of the geothermal water. In addition, the geothermal water could be mixed with cold groundwater or seawater twice or more times, reducing the temperature of the geothermal reservoirs.

参考文献/References:

[1] 甘浩男,蔺文静,闫晓雪,等. 粤中隐伏岩体区地热赋存特征及热异常成因分析[J]. 地质学报, 2020, 94(7): 2096-2106. GAN H N, LIN W J, YAN X X, et al. Analysis of geothermal occurrence characteristics and origin of the thermal anomalies in the hidden igneous rock area in the central Guangdong[J]. Acta Geologica Sinica, 2020,94(7): 2096-2106.
[2] ARMANNSSON H. The fluid geochemistry of Icelandic high temperature geothermal areas[J]. Applied Geochemistry, 2016, 66: 14-64.
[3] 郭清海. 岩浆热源型地热系统及其水文地球化学判据[J]. 地质学报, 2020, 94(12): 3544-3554. GUO Q H. Magma-heated geothermal systems and hydrogeochemical evidence of their occurrence[J]. Acta Geologica Sinica, 2020, 94(12): 3544-3554.
[4] 沈照理, 王焰新, 郭华明. 水-岩相互作用研究的机遇与挑战[J]. 地球科学,2012,37(2):207-219. SHEN Z L, WANG Y X, GUO H M. Opportunities and challenges of water-rock interaction studies[J]. Earth Science,2012,37(2):207-219.
[5] KONG Y L,PANG Z H,SHAO H B, et al. Recent studies on hydrothermal systems in China: a review[C]. Geothermal Energy,2014:1-12.
[6] 高芳蕾,杨小强,吴国爱,等. 海南岛温泉特征与地下热水成因[J]. 吉林大学学报:地球科学版, 2009, 39(2): 281-287. GAO F L, YANG X Q, WU G A, et al. Characteristics of thermal springs and genesis of thermal underground waters in Hainan Island[J]. Journal of Jilin University, 2009, 39(2):281-287,
[7] 汪啸. 广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征[D]. 武汉:中国地质大学(武汉), 2018. WANG X. Formation conditions and hydrogeochemical characteristics of the geothermal water in typical coastal geothermal field with deep faults, Guangdong Province[D].Wuhan:China University of Geosciences(Wuhan), 2018.
[8] 熊绍柏, 金东敏. 福建漳州地热田及其邻近地区的地壳深部构造特征[J]. 地球物理学报,1991, 34(1): 55-63. XIONG S B, JIN D M. Some characteristics of deep structure of the Zhangzhou geothermal field and it’s neighbourhood in the Fujian Province[J]. Chinese Journal of Geophysics, 1991, 34(1):55-63,
[9] 李亭昕,蔺文静,甘浩男,等. 东南沿海干热岩资源成因模式探讨及勘查进展[J]. 地质力学学报, 2020, 26(2): 187-200. LI T X, LIN W J, GAN H N, et al. Research on the genetic model and exploration progress of hot dry rock resources on the southeast coast of China[J]. Journal of Geomechanics, 2020, 26(2):187-200.
[10]裘中良. 厦门地热资源及成因研究[D]. 北京:中国地质大学(北京), 2018. QIU Z L. Study on geothermal resources and its causes in Xiamen[D].Beijing: China University of Geosciences(Beijing),2018.
[11]韩庆之,庄庆祥. 漳州盆地地下热水的来源和运移途径的初步研究[J]. 地球科学, 1988, 13(3): 45-51. HAN Q Z, ZHUANG Q X. Study on the source and pathway of hot water in Zhangzhou basin, Fujian[J]. Scientific Journal of Earth Science, 1988, 13(3): 45-51.
[12]范蔚茗,MENZIES M A,尹汉辉,等. 中国东南沿海深部岩石圈的性质和深部作用过程初探[J]. 大地构造与成矿学, 1993, 17(1): 23-30. FAN W M, MENZIES M A, YIN H H, et al. Nature and processes of the lower lithosphere of the southeast China coast[J]. Geotectonica et Metallogenia, 1993, 17(1): 23-30.
[13]马振波,马艳飞,张平,等. 广域电磁法在福建洪塘镇地热勘查中的应用[J]. 矿产勘查, 2021, 12(3): 661-667. MA Z B, MA Y F, ZHANG P, et al. Application of wide area electromagnetic method in geothermal exploration of Hongtang Town, Fujian Province[J]. Mineral Exploration, 2021, 12(3): 661-667.
[14]庞忠和. 漳州盆地地热系统——成因模式、热能潜力与热水分布规律的研究[D]. 北京:中国科学院地质与地球物理研究所, 1987. PANG Z H. Zhangzhou basin geothermal system:Genesis model, energy pottential and the occurrence of thermal water[D]. Beijing: Institute of Geology and Geophysics,1987.
[15]蔺文静,陈向阳,甘浩男,等. 东南沿海厦门湾—漳州盆地地热地质特征及干热岩勘查方向[J]. 地质学报, 2020, 94(7): 2066-2077. LIN W J, CHEN X Y, GAN H N, et al.Geothermal, geological characteristics and exploration direction of hot dry rocks in the Xiamen bay-Zhangzhou basin, southeastern China[J]. Acta Geologica Sinica, 2020, 94(7): 2066-2077.
[16]王培宗,陈耀安,曹宝庭,等. 福建省地壳——上地幔结构及深部构造背景的研究[J]. 福建地质, 1993, 12(2): 79-158. WANG P Z, CHEN Y A, CAO B T, et al. Crust-upper mantle structure and deep structure setting of Fujian Province[J]. Geology of Fujian,1993, 12(2): 79-158.
[17]王德滋,任启江,邱检生,等. 中国东部橄榄安粗岩省的火山岩特征及其成矿作用[J]. 地质学报, 1996, 70(1): 23-34. WANG D Z, REN Q J, QIU J S, et al. Characteristics of volcanic rocks in the shoshonite Province, Eastern China, and their metallogenesis[J]. Acta Geologica Sinica, 1996, 70(1): 23-34.
[18]张健,王蓓羽,唐显春,等. 华南陆缘高热流区的壳幔温度结构与动力学背景[J]. 地球物理学报, 2018, 61(10): 3917-3932. ZHANG J,WANG B Y, TANG X C, et al. Temperature structure and dynamic background of crust and mantle beneath the high heat flow area of the South China continental margin[J]. Chinese Journal of Geophysics, 2018, 61(10): 3917-3932.
[19]王钧. 东南沿海地区地温场的形成及其分布规律[J]. 地震地质, 1985, 7(1): 49-58. WANG J. Distributions and formation of the geothermal field along the coast, southeastern China[J]. Seismology and Geology, 1985, 7(1): 49-58.
[20]李政红,郝奇琛,李亚松,等.福建厦门市地下水质量及开发利用建议[J].华东地质,2022,43(1):40-48. LI Z H, HAO Q C, LI Y S, et al. The groundwater quality and suggestion on groundwater exploitation in Xiamen, Fujian[J].East China Geology,2022,43(1):40-48.
[21]ARNORSSON S,ANDROSDOTTIR A. Processes controlling the distribution of boron and chlorine in natural waters in Iceland[J]. Geochimica et Cosmochimica Acta, 1995, 59(20): 4125-4146.
[22]王大纯. 水文地质学基础[M].北京:地质出版社, 1986. WANG D C. General Hydrogeology[M]. Beijing: Geological Publishing House,1986.
[23]YURTSEVERY. Worldwide survey of stable isotopes in precipitation[C]//IAEA.Rep Sect Isotope Hyedrol IAEA,1975:40.
[24]陈衍婷,杜文娇,陈进生,等. 厦门地区大气降水氢氧同位素组成特征及水汽来源探讨[J]. 环境科学学报, 2016, 36(2): 667-674. CHEN Y T, DU W J, CHEN J S, et al. Composition of hydrogen and oxygen isotopic of precipitation and source apportionment of water vapor in Xiamen area[J]. Acta Scientiae Circumstantiae,2016, 36(2): 667-674.
[25]黄秀琴. 九龙江流域水文特性[J]. 水利科技, 2008(1):16-20. HUANG X Q. Hydrological characteristics in the Jiulong watershed[J]. Hydraulic Science and Technology, 2008(1): 16-20.
[26]蔡明刚,黄奕普,陈敏,等. 厦门岛南岸地下水的氢氧同位素的示踪研究[J]. 海洋科学, 2003, 27(9): 1-6. CAI M G, HUANG Y P, CHEN M, et al. The study of hydrogen and oxygen isotopes of coastal groundwater in Xiamen Island[J]. Marine Sciences, 2003, 27(9): 1-6.
[27]CRAIG H. The geochemistry of the stable carbon isotopes[J]. Geochimica et Cosmochimica Acta, 1953, 3(2/3): 53-92.
[28]郑西来,刘鸿俊. 地热温标中的水-岩平衡状态研究[J]. 西安地质学院学报, 1996, 18(1): 74-79. ZHENG X L, LIU H J. Study of the water-rock equilibrium state in the application of geothermometer[J]. Journal of Xi’an College of Geology, 1996, 18(1): 74-79.
[29]GIGGENBACH W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2765.
[30]REED M,SPYCHER N. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution[J]. Geochimica et Cosmochimica Acta, 1983, 48(7): 1479-1492.
[31]REED P M. Theoretical chemical thermometry on geothermal waters: problems and methods[J]. Geochimica et Cosmochimica Acta, 1998, 62(6): 1083-1091.
[32]SPYCHER N,PEIFFER L,SONNENTHAL E L, et al. Integrated multicomponent solute geothermometry[J]. Geothermics, 2014, 51(l): 113-123.
[33]FOURNIER R O,TRUESDEEL A H. An empirical Na-K-Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1255-1275.
[34]ALCICEK H,BULBUL A,BROGI A, et al. Origin, evolution and geothermometry of thermal waters in the Glemezli Geothermal Field, Denizli Basin(SW Anatolia, Turkey)[J]. Journal of Volcanology and Geothermal Research, 2018, 349(1): 1-30.
[35]TIAN J,LI Y M,ZHOU X C, et al. Geochemical characteristics of hydrothermal volatiles from southeast China and its implications on the tectonic structure controlling heat convection[J]. Frontiers in Earth Science, 2021:9.

备注/Memo

备注/Memo:
收稿日期:2022-5-12;改回日期:2022-8-14。
基金项目:中国地质调查局"厦漳泉同城化地区综合地质调查(编号:1212011220944)"项目资助。
作者简介:刘春雷,1984年生,男,副研究员,硕士,主要从事水文地质、环境地质研究。Email:chunleiliu-dn@163.com。
通讯作者:李亚松,1983年生,男,研究员,博士,主要从事区域地下水污染、环境地质研究。Email:liyasong@mail.cgs.gov.cn。
更新日期/Last Update: 1900-01-01