高级检索

    高硅花岗岩流体出溶作用的识别和意义

    Identification and significance of fluid exsolution in high silica granite

    • 摘要: 高硅花岗岩以暗色矿物含量低,富SiO2、Rb,贫MgO、FeO、Sr、Ba为特征,富集稀有金属元素,其研究对于理解花岗岩成因演化、稀有金属元素富集和成矿过程至关重要。岩相学和地球化学特征指示其经历高程度的分异演化,H2O等挥发分作为不相容组分在残余熔体中逐渐富集饱和,导致流体出溶在高硅花岗质熔体中,但如何识别这一过程是难点。文章从岩相学、地球化学、矿物学、金属稳定同位素(Li、Ba、Fe)等角度总结了高硅花岗岩中流体出溶作用的证据和指标。岩相学方面,晶洞构造、雪球结构、单向固结结构等特殊结构、构造的出现是流体出溶的重要标志;地球化学方面,极低的Nb/Ta值(<5)、Zr/Hf值、稀土元素四分组效应是流体-熔体相互作用的有效识别标志;矿物学方面,锆石蜕晶化作用、轻稀土元素富集及钾长石富Pb指示存在热液流体参与;金属稳定同位素方面,相对于普通花岗岩,高硅花岗岩通常富集重Li、轻Ba和重Fe同位素,流体-熔体相互作用很可能是主要控制因素。但部分地球化学指标还存在较大争论,在实际使用过程中需结合不同指标进行综合分析。经过岩浆演化和流体出溶两阶段的富集过程,稀有金属元素得以在出溶流体中极度富集进而成矿。

       

      Abstract: High silica granite is characterized with low content of dark minerals, abundant SiO2, Rb, poor MgO, FeO, Sr, Ba, and enrichment of rare metal elements. Research on it is crucial to understand the petrogenesis of granite, the enrichment of rare metal elements and mineralization process. The petrographic and geochemical characteristics indicate that it has undergone a high degree of differentiation evolution. Volatile components such as H2O, as incompatible components, are gradually enriched and eventually saturated in the residual melt, resulting in inevitable fluid dissolution in high silica granitic melts, but how to identify it is difficult. This paper summarizes the evidence and indicators for fluid exsolution in high silica granite from the perspectives of petrography, whole-rock geochemistry, mineralogy, and metal stable isotopes (Li, Ba, Fe). The appearance of miarolitic structure, snowball texture and unidirectional solidification texture are important petrographic signs of fluid exsolution. In terms of whole-rock geochemistry, extremely low Nb/Ta values (<5), Zr/Hf values and the tetrad effect of rare earth elements are effective identifiers of fluid-melt interaction. In mineralogy, metamictization and LREE enrichment of zircon and high Pb content in K-feldspar indicate the involvement of hydrothermal fluids. Compared to common granite, high silica granite is usually enriched with heavy Li, light Ba, and heavy Fe isotopes. Fluid-melt interaction is probably the major factor in isotope fractionation of high silica granite. However, some geochemical evidence remains controversial, so we recommend to use together the various lines of evidence. After the two-stage enrichment process of magma evolution and fluid exsolution, rare metal elements can be extremely enriched in the exsolved fluid and then mineralized.

       

    /

    返回文章
    返回