[1]朱玉晨,李剑锋,郝奇琛,等.福建晋江流域锰负荷分布及源区识别[J].华东地质,2022,43(01):113-123.[doi:10.16788/j.hddz.32-1865/P.2022.01.012]
 ZHU Yuchen,LI Jianfeng,HAO Qichen,et al.Spatial distribution and source identification of manganese load in Jinjiang watershed, Fujian Province[J].East China Geology,2022,43(01):113-123.[doi:10.16788/j.hddz.32-1865/P.2022.01.012]
点击复制

福建晋江流域锰负荷分布及源区识别()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
43
期数:
2022年01期
页码:
113-123
栏目:
专辑
出版日期:
2022-03-28

文章信息/Info

Title:
Spatial distribution and source identification of manganese load in Jinjiang watershed, Fujian Province
作者:
朱玉晨12 李剑锋12 郝奇琛12 李亚松12 李政红12 刘春雷12
1. 中国地质科学院水文地质环境地质研究所, 河北 石家庄 050061;
2. 自然资源部地下水科学与工程重点实验室, 河北 石家庄 050061
Author(s):
ZHU Yuchen12 LI Jianfeng12 HAO Qichen12 LI Yasong12 LI Zhenghong12 LIU Chunlei12
1. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang 050061, Hebei, China;
2. Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, Hebei, China
关键词:
晋江流域锰浓度锰负荷源区识别福建生态文明试验区综合地质调查工程
Keywords:
Jinjiang watershedmanganese concentrationmanganese loadidentification of the source areacomprehensive geological survey project of Fujian experimental area of eco-civilization
分类号:
X522
DOI:
10.16788/j.hddz.32-1865/P.2022.01.012
摘要:
以福建晋江流域锰元素为研究对象,将整个流域划分为60个子流域并在各子流域出口处设置水质监测断面,分别于丰水期和枯水期对断面锰浓度进行取样测试,研究锰浓度的时空分布特征。结合流量监测和降水资料,利用水文比拟法计算并总结锰负荷的空间分布,基于锰负荷贡献率进行了锰源区识别。结果表明:丰水期锰浓度普遍高于枯水期,西溪锰浓度总体高于东溪。受矿山开采影响,全年锰浓度最大值位于上游双溪与大畬溪交汇处。锰负荷丰水期远高于枯水期,且具有随径流向下游聚集的趋势,最大值位于晋江流域最下游入海口断面。识别出的锰源区主要位于西溪流域以及干流下游临入海口子流域,应在今后的环境综合治理工作中重点关注。
Abstract:
Manganese pollution in the Jinjiang watershed of Fujian Province is a key research object. In this study, the entire watershed was divided into 60 sub-watersheds and water quality monitoring sections were set up at the outlets of each sub-watershed. Surface water samples were collected and tested during the flood and dry periods, and the temporal and spatial distribution characteristics of the manganese concentration were analyzed. Combined with flow monitoring and precipitation data, the spatial distribution of manganese load was calculated and analyzed by using hydrological analogy, and the source of manganese pollution was identified based on the load contribution rate. The results showed that the manganese concentration in the flood period was generally higher than that in the dry period, and the manganese concentration in west stream was generally higher than that in east stream. Due to mining, the maximum annual manganese concentration is located at the intersection of the Shuang Stream and the Dashe Stream. In that place the manganese load is much higher in the flood period than that in the dry period, which has a tendency to accumulate downstream with the runoff. The maximum value of manganese occurred at the section of the whole downstream of the Jinjiang watershed. As a result, the identified manganese source areas mainly located in the west stream and sub-watershed near estuary, where should be focused on in the future for comprehensive environmental management work.

参考文献/References:

[1] ZONI S, ALBINI E, LUCCHINI R. Neuropsychological testing for the assessment of manganese neurotoxicity:A review and a proposal[J]. American Journal of Industrial Medicine, 2007, 50(11):812-30.
[2] ROELS H A, BOWLER R M, KIM Y, et al. Manganese exposure and cognitive deficits:A growing concern for manganese neurotoxicity[J]. Neurotoxicology, 2012, 33(4):872-80.
[3] COTRUVO J A. 2017 WHO guidelines for drinking water quality:first addendum to the fourth edition[J]. Journal-American Water Works Association, 2017, 109(7):44-51.
[4] 中华人民共和国卫生部. GB5749-2006生活饮用水卫生标准[S]. 北京:中国标准出版社, 2006:1-9. The Minister of Health of the People’s Republic of China. GB5749-2006 Standards for Drinking Water Quality[S]. Beijing:Standards Press of China, 2006:1-9.
[5] 国家环境保护总局. GB3838-2002地表水环境质量标准[S]. 北京:中国标准出版社, 2002:1-9. State Environmental Protection Administration of the People’s Republic of China. GB3838-2002 Environmental quality standards for surface water[S]. Beijing:Standards Press of China, 2002:1-9.
[6] 中华人民共和国国家质量监督检验检疫总局. GBT14848-2017地下水质量标准[S]. 北京:中国标准出版社, 2017:1-14. State General Administration of the People’s Republic of China for Quality Supervision and Inspection and Quarantine. GBT14848-2017 Standard for groundwater quality[S]. Beijing:Standards Press of China, 2017:1-14.
[7] BRYANT S R, SAWYER A H, BRIGGS M A, et al. Seasonal manganese transport in the hyporheic zone of a snowmelt-dominated river (East River, Colorado, USA)[J]. Hydrogeology Journal, 2020, 28(4):1323-1341.
[8] WENG H X, QIN Y C, CHEN X H. Elevated iron and manganese concentrations in groundwater derived from the Holocene transgression in the Hang-Jia-Hu Plain, China[J]. Hydrogeology Journal, 2007, 15(4):715-726.
[9] HUANG B, LI Z W, CHEN Z L, et al. Study and health risk assessment of the occurrence of iron and manganese in groundwater at the terminal of the Xiangjiang River[J]. Environmental Science and Pollution Research, 2015, 22(24):19912-19921.
[10] PAUFLER S, GRISCHEK T, BENSO M R, et al. The impact of river discharge and water temperature on manganese release from the riverbed during riverbank filtration:A case study from Dresden, Germany[J]. Water, 2018, 10(10):1476.
[11] SPANGLER A H, SPANGLER J G. Groundwater manganese and infant mortality rate by county in North Carolina:an ecological analysis[J]. Ecohealth, 2009, 6(4):596-600.
[12] SPANGLER J G, REID J C. Environmental manganese and cancer mortality rates by county in North Carolina:an ecological study[J]. Biological Trace Element Research, 2010, 133(2):128-135.
[13] LI P Y, QIAN H, HOWARD K W F, et al. Anthropogenic pollution and variability of manganese in alluvial sediments of the Yellow River, Ningxia, northwest China[J]. Environmental Monitoring and Assessment, 2014, 186(3):1385-1398.
[14] 陈能汪, 王德利, 鲁婷, 等. 九龙江流域地表水锰的污染来源和迁移转化机制[J]. 环境科学学报, 2018, 38(8):2955-2964. CHEN N W,WANG D L,LU T,et al. Manganese pollution in the Jiulong River watershed:Sources and transformation[J]. Acta Scientiae Circumstantiae,2018, 38(8):2955-2964.
[15] 邓立凡, 黄廷林, 李楠, 等. 水源水库暴雨径流过程水体锰的迁移及其影响[J]. 环境科学, 2019, 40(6):232-239. DENG L F, HUANG T L, LI N,et al. Migration Characteristics of Manganese During Rainfall Events and its Impactson Water Quality in a Drinking Water Source Reservoir[J]. Environmental Science, 2019, 40(6):232-239.
[16] DJODJIC F, SP?NAR M. Identification of critical source areas for erosion and phosphorus losses in small agricultural catchment in central Sweden[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2012, 62(sup2):229-240.
[17] ZHANG S, WANG Z, ZHANG B, et al. Risk assessment and identification of critical source areas for diffuse phosphorus loss in Shuangyang River Watershed, Northeast China[J]. Fresenius Environmental Bulletin, 2010, 19(12):2832-2839.
[18] 周慧平, 高超, 朱晓东. 关键源区识别:农业非点源污染控制方法[J]. 生态学报, 2005, 25(12):3368-3374. ZHOU H P, GAO C, ZHU X D. Identification of critical source areas:An efficient way for agricultural non-point source pollution control[J]. Acta Ecologica Sinica, 2005, 25(12):3368-3374.
[19] SHEN Z, QIU J, HONG Q, et al. Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Re-gion[J]. Science of the Total Environment, 2014, 493:138-146.
[20] 黎坤, 林凯荣, 江涛, 等. 数字滤波法在点源和非点源污染负荷分割中的应用[J]. 环境科学研究, 2010, 23(3):298-303. LI K, LIN K R, JIANG T, et al. Application of a Digital Filter in the Differentiation of Pollutant Loads from Point and Non-Point Sources[J]. Research of Environmental Sciences, 2010,23(3):298-303.
[21] 陈小嵘, 龚苍涛, 郭庆奋. 泉州市64份生活饮用水水质全分析[J]. 海峡预防医学杂志, 2017, 23(3):57-59. CHEN X R, GONG C T, GUO Q F. Analysis on the quality of 64 drinking water in Quanzhou city[J]. Strait Journal of Preventive Medicine, 2017, 23(3):57-59.
[22] 郭庆奋, 洪思让, 陈小嵘, 等. 泉州市2002-2014年水源水水质监测分析[J]. 海峡预防医学杂志, 2016, 22(4):65-68. GUO Q F, HONG S R, CHEN X R, et al. Monitoring and analysis of water quality in quanzhou during 2002-2014[J]. Strait Journal of Preventive Medicine, 2016, 22(4):65-68.
[23] 滕彦国, 陈海洋, 宋柳霆, 等.晋江流域饮用水水源保护与管理[M]. 北京:科学出版社, 2014. TENG Y G, CHEN H Y, SONG L T, et al. Protection and management of drinking water source in Jinjiang River Basin[M]. Beijing:Science Press, 2014.
[24] 马岚, 滕彦国, 林学钰, 等. 河流型饮用水源地保护区划分敏感水质指标确定——以晋江流域为例[J]. 北京师范大学学报:自然科学版, 2013, 49(2/3):193-198. MA L, TENG Y G, LIN X Y, et al. Identification of Sensitive Water Quality Index Forprotection Area Classification of River-Style Drinking Water Source Area:Case of Jinjiang River Basin[J]. Journal of Beijing Normal University (Natural Science), 2013, 49(2/3):193-198.
[25] 马岚, 滕彦国, 林学钰, 等. 晋江流域水体污染源解析研究[J]. 北京师范大学学报:自然科学版, 2012, 48(5):471-475. MA L, TENG Y G, LIN X Y, et al. Sources of Water Pollution in the Jinjiang River Basin[J]. Journal of Beijing Normal University (Natural Science), 2012, 48(5):471-475.
[26] 马岚, 滕彦国, 林学钰, 等. 晋江金鸡闸断面面源污染负荷及水质敏感期的确定[J]. 环境科学研究, 2014, 27(10):1126-1133. MA L, TENG Y G, LIN X Y, et al. Determination of Area Source Pollution Load and Fragile Water Quality Period of Jinji Sluice Section of Jinjiang River[J]. Research of Environmental Sciences,2014,27(10):1126-1133.
[27] 马岚, 滕彦国, 林学钰, 等. 晋江流域污染负荷空间分布及关键源区识别[J]. 中国环境科学, 2015, 35(12):3679-3688. MA L, TENG Y G, LIN X Y, et al. Spatial distribution of pollution load and critical source area identification in the Jinjiang River Basin[J]. China Environmental Science, 2015, 35(12):3679-3688.
[28] 鹿世瑾. 福建气候[M]. 北京:气象出版社, 2012. LU S J, WANG Y. The Climate of Fujian[M]. Beijing:China Meteorology Press, 2012.
[29] 杨柳. 泉州山美水库集水区土地利用与覆被变化的水文响应[D]. 福州:福建师范大学, 2013. YANG L. Simulation of the Hydrologic Response to Land-use and Land-cover Changes inShanmei Reservoir Catchment of Quanzhou[D]. Fuzhou:Fujian Normal University, 2013
[30] 谢菲. 晋江流域降水径流演变规律与旱涝特征[D]. 福州:福建师范大学, 2011. Evolution of Precipitation and Runoff and Characteristic of Flood/Drought in Jinjiang Basin[D]. Fuzhou:Fujian Normal University, 2011.
[31] 杨丽英, 李宁博, 许新宜. 晋江流域水量分配与生态环境补偿机制[J]. 人民黄河, 2015, 37(2):68-71. YANG L Y, LI N B, XU X Y. Study on Water Allocation and Ecological Compensation of Water Resources Protection in Jinjiang River Basin[J]. Yellow River, 2015, 37(2):68-71.
[32] 中华人民共和国卫生部. GB11911-89水质铁、锰的测定火焰原子吸收分光光度法[S]. 北京:中国标准出版社, 1990:1-4. The Minister of Health of the People’s Republic of China. GB11911-89 Water quality-Determination of iron and manganese-Flame atomic absorption spectrometric method[S]. Beijing:Standards Press of China,1990:1-4.
[33] 富国. 河流污染物通量估算方法分析(Ⅰ)——时段通量估算方法比较分析[J]. 环境科学研究, 2003, 16(1):1-4. FU G. Analysis of the Estimation Methods for the River Pollutant Fluxes(Ⅰ):Comparison and Analysis of the Estimation Methods of Period Fluxes[J].Research of Environmental Sciences,2003,16(1):1-4.
[34] 泉州市人民政府. 泉州市矿产资源总体规划(2016-2020年)[R].泉州:泉州市人民政府, 2017:20-40. The People’s Government of Quanzhou City. The Overall Plan of Mineral Resources(2016-2020)[R]. Quanzhou:The People’s Government of Quanzhou City,2017:20-40.
[35] 于瑞莲,张伟芳,胡恭任,等.晋江河口沉积物重金属污染历史与来源[J].环境科学研究,2015,28(6):907-914. YU R L,ZHANG W F,HU G R,et al.Pollution History and Source Analysis of Heavy Metals in Sediments from Jinjiang River Estuary[J].Research of Environmental Sciences,2015,28(6):907-914.
[36] 路雨, 苏保林, 张传霞. 泉州市晋江流域纳污能力计算[J]. 南水北调与水利科技, 2010, 8(2):99-102. LU Y,SU B L,ZHANG C X. Calculation of Allowable Pernmitted Assimilative Capacity of.injiang River Basin,Quanhou City[J]. South-to-North Water Transfers and Water Science&Technology, 2010, 8(2):99-102.

相似文献/References:

[1]李剑锋,朱玉晨,刘春雷,等.晋江流域生态环境脆弱性评价[J].华东地质,2022,43(01):94.[doi:10.16788/j.hddz.32-1865/P.2022.01.010]
 LI Jianfeng,ZHU Yuchen,LIU Chunlei,et al.Vulnerability assessment of ecological environment of Jinjiang River Basin[J].East China Geology,2022,43(01):94.[doi:10.16788/j.hddz.32-1865/P.2022.01.010]

备注/Memo

备注/Memo:
收稿日期:2021-06-09;改回日期:2021-09-13。
基金项目:中国地质调查局"厦漳泉同城化地区综合地质调查(编号:DD20190303)"项目资助。
作者简介:朱玉晨,1986年生,男,助理研究员,硕士,主要从事地下水数值模拟研究。Email:zhuyuchen413@163.com。
通讯作者:李剑锋,1984年生,男,助理研究员,博士,主要从事水文地质与遥感研究。Email:lichris99@foxmail.com。
更新日期/Last Update: 1900-01-01