[1]章诚诚,方朝刚,刘桃,等.沉积盆地洪水异重流研究进展[J].华东地质,2024,45(01):49-61.[doi:10.16788/j.hddz.32-1865/P.2024.01.004]
 ZHANG Chengcheng,FANG Chaogang,LIU Tao,et al.Research progress on flood-triggered hyperpycnal flows in sedimentary basins[J].East China Geology,2024,45(01):49-61.[doi:10.16788/j.hddz.32-1865/P.2024.01.004]
点击复制

沉积盆地洪水异重流研究进展()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
45
期数:
2024年01期
页码:
49-61
栏目:
第一届青年编委专辑(一)
出版日期:
2024-04-20

文章信息/Info

Title:
Research progress on flood-triggered hyperpycnal flows in sedimentary basins
作者:
章诚诚12 方朝刚13 刘桃1 吴通1 邵威1 廖圣兵1 徐锦龙4
1. 中国地质调查局南京地质调查中心, 江苏 南京 210016;
2. 安徽省煤田地质局勘查研究院, 安徽 合肥 230088;
3. 云南大学国际河流与生态安全研究院, 云南 昆明 650500;
4. 安徽省地质调查院, 安徽 合肥 230001
Author(s):
ZHANG Chengcheng12 FANG Chaogang13 LIU Tao1 WU Tong1 SHAO Wei1 LIAO Shengbing1 XU Jinlong4
1. Nanjing Center, China Geological Survey, Nanjing 210016, Jiangsu, China;
2. Exploration Research Institute, Anhui Provincial Bureau of Coal Geology, Hefei 230088, Anhui, China;
3. Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, Yunnan, China;
4. Geological Survey of Anhui Province, Hefei 230001, Anhui, China
关键词:
异重流形成条件演化过程沉积特征
Keywords:
hyperpycnal flowformation conditionevolutionary processsedimentary characteristic
分类号:
P53
DOI:
10.16788/j.hddz.32-1865/P.2024.01.004
摘要:
洪水触发形成的异重流(hyperpycnal flow)是盆地中一种重要的深水重力流沉积体系,是当前沉积学研究的热点。基于大量文献调研,文章对异重流的发育条件、演化过程以及沉积特征的研究现状与进展进行了归纳和总结。异重流是由洪泛期河流携带大量沉积物颗粒从河口直接注入的,流体密度大于环境水体密度且受浮力影响小并沿盆底流动的流体。异重流的形成受到多种因素的影响,主要包括地形、气候和物源条件。异重流的演化经历了回流区、深度有限流区和潜入区,在流动过程中流量振荡频繁,但总体表现出先增强后减弱的水动力学演化特征。异重流形成的沉积产物被称为异重岩,以发育流水成因交错层理、层内冲刷接触面、异地植物碎片、逆粒序-正粒序二元结构而区别于其他重力流沉积。根据异重流沉积物的搬运负载方式,可将异重岩划分为底载成因、悬载成因和漂浮物成因3种主要岩性类型。异重岩的沉积特征与其能量演化过程密切相关,不同空间位置形成的沉积序列及沉积单元存在一定差异。深入研究异重流沉积有助于完善深水重力流理论,对认识地表地质过程、重建古环境以及指导油气勘探具有重要意义。今后可以从构建多种沉积模式、多因素耦合研究和多尺度观测监测等方面展开研究,为异重流沉积学发展和实际地质应用提供更准确的理论依据。
Abstract:
Hyperpycnal flows triggered by floods are important deep-water gravity flow sedimentary systems in basins and are currently a hot topic in sedimentology research. Based on extensive literature review, this paper summarizes the research status and progress of hyperpycnal flows in terms of their development conditions, evolutionary processes, and sedimentary characteristics. Hyperpycnal flows are dense, formed and less affected by buoyancy during flood periods when a sediment-laden fluid plunges into the bottom of a water body and flows basinward. The formation of hyperpycnal flows is influenced by various factors, including topography, climate, and sediment sources. The evolutionary process of hyperpycnal flows involves backwater zone, depth-limited plume zone, and plunging zone, with frequent fluctuations in flow rate during flow, but overall exhibiting a hydrodynamic evolution characteristic of initial enhancement followed by attenuation. The sedimentary products formed by hyperpycnal flows are called hyperpycnites. They can be distinguished from other gravity flow deposits by their development of the typical sedimentary structures such as water causes cross-bedding, interlayer scour contact surface, allochthonous plant fragments, and the coupling of inverse and normal grading. Hyperpycnites can be divided into three lithofacies:bed load, the suspended load, and lofting, based on the sediment transport mode of the flow. The sedimentary characteristics of hyperpycnal deposits are closely related to the energy evolution process of hyperpycnal flows, and thus the characteristics of sedimentary sequences and sedimentary units formed in different spatial locations also vary. In-depth research on hyperpycnal flow sedimentation contributes to improving deep-water gravity flow theory and is of great significance for understanding surface geological processes, reconstructing ancient environments, and guiding oil and gas exploration. Future research can focus on constructing multiple sedimentary models, studying the coupling of multiple factors, and conducting multi-scale observation and monitoring to provide more accurate scientific basis for the development and practical geological applications of hyperpycnal flow sedimentology.

参考文献/References:

[1] WEIMER P, SLATT R M. Introduction to the petroleum geology of deep-water settings[M]. Tulsa:AAPG, 2006:816.
[2] MULDER T, SYVITSKI J P M, MIGEON S,et al. Marine hyperpycnal flows:initiation, behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20(6/8):861-882.
[3] BATES C. Rational theory of delta formation[J]. AAPG Bulletin, 1953, 37(9):2119-2162.
[4] GWIAZDA R,PAULL C K,USSLER III W,et al. Evidence of modern fine-grained sediment accumulation in the Monterey Fan from measurements of the pesticide DDT and its metabolites[J]. Marine Geology, 2015, 363:125-133.
[5] KAO S J,DAI M,SELVARAJ K,et al. Cyclone-driven deep sea injection of freshwater and heat by hyperpycnal flow in the subtropics[J]. Geophysical Research Letters, 2010, 37(21):389-400.
[6] 潘树新,刘化清, ZAVALA C,等.大型坳陷湖盆异重流成因的水道-湖底扇系统——以松辽盆地白垩系嫩江组一段为例[J].石油勘探与开发, 2017, 44(6):860-870.PAN S X, LIU H Q, ZAVALA C, et al. Sublacustrine hyperpycnal channel-fan system in a large depression basin:a case study of Nen 1 member, Cretaceous Nenjiang Formation in the Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2017, 44(6):860-870.
[7] TALLING P J, BAKER M L, POPE E L, et al. Longest sediment flows yet measured show how major rivers connect efficiently to deep sea[J]. Nature Communications, 2022, 13:4193.
[8] PIPER D J W, NORMARK W R. Processes that initiate turbidity currents and their influence on turbidities:a marine geology perspective[J]. Journal of Sedimentary Research, 2009, 79:347-362.
[9] MULDER T, MIGEON S. Twentieth century floods recorded in the deep Mediterranean sediments[J]. Geology, 2001, 29:1011-1014.
[10] MULDER T, MIGEON S, SAVOYE B, et al. Inversely graded turbidite sequences in the deep Mediterranean:a record of deposits from flood-generated turbidity currents?[J]. Geo-Marine Letters, 2001, 21:86-93.
[11] MULDER T, ALEXANDER J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48:269-299.
[12] PLINK-BJ?KLUND P, STEEL R J. Initiation of turbidite currents:Outcrop evidence for Eocene hyperpycnal flow turbidites[J]. Sedimentary Geology, 2004, 165(1/2):29-52.
[13] PARSONS J D, BUSH J, SYVITSKI J P M. Hyperpycnal plume formation from riverine outflows with small sediment concentrations[J]. Sedimentology, 2001, 48(2):465-478.
[14] 黄学勇,高茂生,侯国华,等.莱州湾海洋沉积物粒度特征及其环境响应分析[J].华东地质,2023,44(4):402-414.HUANG X Y,GAO M S,HOU G H,et al.Grain size characteristics and environmental response of marine sediments in Laizhou Bay[J].East China Geology,2023,44(4):402-414.
[15] ZAVALA C, ARCURI M, MEGLIO M D, et al. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits[G]//ZAVALA C, SLATT R. Sediment transfer from shelf to deep water-revisiting the delivery system. AAPG Studies in Geology, 2011, 61:31-51.
[16] FOREL F. Les ravins sous-lacustres des fleuves glaciaires[J]. Comptes Rendus de l’Academie des Sciences, 1881, 101(16):725-728.
[17] MULDER T, SYVITSKI J P M. Turbidity current generated at river mouths during exceptional discharges to the world oceans[J]. Journal of Geology, 1995, 103(3):285-299.
[18] WRIGHT L, WISEMAN W, BORNHOLD B, et al. Marine dispersal and deposition of Yellow River silts by gravity-driven underflows[J]. Nature,1988, 332:629-632.
[19] SOYINKA O A, SLATT R M. Identification and micro-stratigraphy of hyperpycnites and turbidites in Cretaceous Lewis Shale, Wyoming[J]. Sedimentology, 2008, 55:1117-1133.
[20] 赵澂林,刘孟慧.湖底扇模式及其在油气预测中的应用[J].华东石油学院学报, 1984, 8(4):323-334.ZHAO Z L, LIU M H. Facies model of the sublake-fan and its application to oil and gas exploration[J]. Journal of Huadong Petroleum Institute, 1984, 8(4):323-334.
[21] 赵国连,赵澄林,叶连俊.渤海湾盆地"四扇一沟"沉积体系及其油气意义[J].地质力学学报, 2005, 11(3):245-258.ZHAO G L, ZHAO C L, YE L J. Sedimentary system of "four fans and one channel" in the Bohai Gulf Basin and its significance for petroleum exploration[J]. Journal of Geomechanics, 2005, 11(3):245-258.
[22] ZAVALA C, ARCURI M. Intrabasinal and extrabasinal turbidites:originand distinctive characteristics[J]. Sedimentary Geology, 2016, 337:36-54.
[23] MULDER T, MIGEON S, SAVOYE B, et al. Reply to discussion by Shanmugam on Mulder et al.(2001, Geo-Marine Letters 21:86-93) Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents?[J]. Geo-Marine Letters. 2002, 22:112-120.
[24] MULDER T, CHAPRON E. Flood deposits in continental and marine environments:Character and significance[G]//ZAVALA C, SLATT R. Sediment transfer from shelf to deep water-revisiting the delivery system. AAPG Studies in Geology, 2011, 61:1-30.
[25] YANG T, CAO Y C, LIU K Y, et al. Gravity-flow deposits caused by different initiation processes in a deep-lake system[J]. AAPG Bulletin, 2020, 104(7):1463-1499.
[26] PATTISON S J, AINSWORTH R B, HOFFMAN T A. Evidence of across shelf transport of fine-grained sediments:turbidite-filled shelf channels in the Campanian Aberdeen Member, Book Cliffs, Utah, USA[J]. Sedimentology, 2007, 54:1033-1064.
[27] ALEXANDER J AND MULDER T. Experimental quasi-steady density current[J]. Marine Geology, 2002, 186:195-210.
[28] STEVENSON C J, PEAKALL J. Effects of topography on lofting gravity flows:implications for the deposition of deep-water massive sands[J]. Marine and Petroleum Geology, 2010, 27:1366-1378.
[29] 伍剑波,孙强,张泰丽,等.地形起伏度与滑坡发育的相关性——以丽水市滑坡为例[J].华东地质,2022,43(2):235-244.WU J B,SUN Q,ZHANG T L,et al.Research for the correlation between relief amplitude and landslides:a case study of Lishui City[J].East China Geology,2022,43(2):235-244.
[30] MUTI E, BERNOULLI D,LUCCHI F R, et al. Turbidites and turbidity currents from Alpine flysch to the exploration of continental margins[J]. Sedimentology, 2009, 56:267-318.
[31] PETTER A L, STEEL R J. Hyperpycnal low variability and slope organization on an Eocene shelf margin, Central Basin, Spitsbergen[J]. AAPG Bulletin, 2006, 90:1451-1472.
[32] WARRICK J A, XU J P, NOBLE M A, et al. Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California river[J]. Continental Shelf Research, 2008, 28:991-1009.
[33] HUNEKE H, MULDER T. Deep-sea Sediments[M]. London:Elsevier, 2011, 46-54.
[34] WRIGHT L D, YANG Z S, BORNHOLD B D, et al. Hyperpycnal plumes and plume fronts over the Huanghe (Yellow River) delta front[J]. Geo-Marine Letters, 1986, 6:97-105.
[35] WANG H J, BI N S, SAITO Y, et al. Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea:causes and environmental implications in its estuary[J]. Journal of Hydrology, 2010, 391(3/4):302-313.
[36] LAMB M P, MOHRIG D. Do hyperpycnal-low deposits record river-flood dynamics?[J]. Geology, 2009, 37:1067-1070.
[37] LAMB M P, MCELROY B, KOPRIVA B, et al. Linking river-flood dynamics to hyperpycnal-plume deposits:experiments, theory, and geological implications[J]. GSA Bulletin, 2010, 122(9/10):1389-1400.
[38] 余斌.浊流和泥石流的异重流初期潜入点的实验研究[J].水科学进展, 2008, 19(1):27-35.YU B. Experimental study on the incipient plunging point of stratified flow of turbidity currents and debris flows[J]. Advances in Water Science, 2008, 19(1):27-35.
[39] KHAN S M, IMRAN J, BRADFORD S. Numerical modeling of hyperpycnal plume[J]. Marine Geology, 2005, 222/223:193-211.
[40] ZAVALA C, PONCE J, ARCURI M, et al. Ancient lacustrine hyperpycnites:a depositional model from a case study in the Rayoso Formation (Cretaceous) from West-Central Argentina[J]. Journal of Sedimentary Research, 2006, 76:41-59.
[41] KASSEM A, IMRAN J. Simulation of turbid underflow generated by the plunging of a river[J]. Geology, 2001, 29(7):655-658.
[42] ZAVALA C,潘树新.异重流成因和异重岩沉积特征[J].岩性油气藏,2018, 30(1):1-18.ZAVALA C, PAN S X. Hyperpycnal flows and hyperpycnites:origin and distinctive characteristics[J]. Lithologic Reservoirs, 2018, 30(1):1-18.
[43] 谈明轩,朱筱敏,朱世发.异重流沉积过程和沉积特征研究[J].高校地质学报, 2015, 21(1):94-104.TAN M X, ZHU X M, ZHU S F. Research on sedimentary process and characteristics of hyperpycnal flows[J]. Geological Journal of China Universities, 2015, 21(1):94-104.
[44] 栾国强,董春梅,林承焰,等.异重流发育条件、演化过程及沉积特征[J].石油与天然气地质,2018,39(3):438-453.LUAN G Q, DONG C M, LIN C Y, et al. Development conditions, evolution process and depositional features of hyperpycnal flow[J]. Oil&Gas Geology, 2018, 39(3):438-453.
[45] HAUGHTON P, DAVIS C, MCCAFFREY W, et al. Hybrid sediment gravity flow deposits-classification, origin and significance[J]. Marine and Petroleum Geology, 2009, 26:1900-1918.
[46] TALLING P J. Hybrid submarine flows comprising turbidity cur-rent and cohesive debris flow:deposits, theoretical and experimental analyses, and generalized models[J]. Geosphere, 2013, 9(3):460-488.
[47] TALLING P J, MASSON D G, SUMNER E J, et al. Subaqueous sediment density flows:depositional processes and deposit types[J]. Sedimentology, 2012, 59(7):1937-2003.
[48] GIRARD F, GHIENNE J, RUBINO J. Occurrence of hyperpycnal flows and hybrid event beds related to glacial outburst events in a late Ordovician Proglacial delta (Murzuq Basin, SW Libya)[J]. Journal of Sedimentary Research, 2012, 82:688-708.
[49] ARNOTT R. Bedforms, primary structures and grain fabric in the presence of suspended sediment rain[J]. Journal of Sedimentary Petrology, 1989, 59:1062-1069.
[50] BAAS J. Conditions for formation of massive turbiditic sandstones by primary depositional processes[J]. Sedimentary Geology, 2004, 166:293-310.
[51] LECLAIR S. Preservation of cross-strata due to the migration of subaqueous dunes:an experimental investigation[J]. Sedimentology, 2002, 49:1157-1180.
[52] YANG T, CAO Y, WANG Y, et al. Sedimentary characteristics and depositional model of hyperpycnites in the gentle slope of a lacustrine rift basin:a case study from the third member of the Eocene Shahejie Formation, Bonan Sag, Bohai Bay Basin, Eastern China[J]. Basin Research, 2023, 35, 1590-1618.
[53] ZAVALA C, ARCURI M, VALIENTE L. The importance of plant re-mains as diagnostic criteria for the recognition of ancient hyperpycnites[J]. Revue de Paléobiologie, Genève, 2012, 11:457-469.
[54] DUCASSOU E, MULDER T, MIGEON S, et al. Nile floods recorded in deep Mediterranean sediments[J]. Quaternary Research, 2008, 70:382-391.
[55] NAKAJIMA T. Hyperpycnites deposited 700 km away from river mouths in the Central Japan Sea[J]. Journal of Sedimentary Research, 2006, 76(1):60-73.
[56] KNELLER B, BRANNEY M. Sustained high-density turbidity currents and the deposition of thick massive sands[J]. Sedimentology, 1995, 42:607-616.
[57] HOYAL D C J D, VAN WAGONER J C, ADAIR N L, et al. Sedimentation from jets:a depositional model for clastic deposits of all scales and environments. Search and Discovery, 2003, 40082:1-9.
[58] XIAN B Z, WANG J H, GONG C L, et al. Classification and sedimentary characteristics of lacustrine hyperpycnal channels:Triassic outcrops in the south Ordos Basin, central China[J]. Sedimentary Geology, 2018, 368:68-82.
[59] SINCLAIR H D, TOMASSO M. Depositional evolution of confined turbidite basins[J]. Journal of Sedimentary Research, 2002, 72(4):451-456.
[60] TONIOLO H, LAMB M P, PARKER G. Depositional turbidity currents in diapiric minibasins on the continental slop:formulation and theory[J]. Journal of Sedimentary Research, 2006, 76(5):783-797.
[61] DOU L X, BEST J, BAO Z D, et al. The sedimentary architecture of hyperpycnites produced by transient turbulent flows in a shallow lacustrine environ-ment[J]. Sedimentary Geology, 2021, 411:105804.
[62] FENG Z Q, ZHANG S, CROSS T A, et al. Lacustrine turbidite channels and fans in the Mesozoic Songliao Basin, China[J]. Basin Research, 2010, 22(1):96-107.
[63] WANG Y J, YIN T J, TANG Y, et al. Architecture characteristics of hyperpycnal deposits:insights from numerical modeling with numerical simulation platform grade[J]. Interpretation, 2023, 11(1):175-188.
[64] SHANMUGAM G. Discussion on Mulder et al.(2001, Geo-Marine Letters 21:86-93) Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents?[J]. Geo-Marine Letters, 2002, 22:108-111.
[65] TALLING P J. On the triggers, resulting flow types and frequencies of subaqueous sediment density lows in different settings[J]. Marine Geology, 2014, 352:155-182.
[66] CHEN P, XIAN B Z, LI M J, et al. A giant lacustrine flood-related turbidite system in the Triassic Ordos Basin, China:Sedimentary processes and depositional architecture[J]. Sedimentology, 2021, 68:3279-3306.
[67] YOSHIDA M, YOSHIUCHI Y, HOYANAGI K. Occurrence conditions of hyperpycnal flows, and their significance for organic-matter sedimentation in a Holocene estuary, Niigata Plain, Central Japan[J]. Island Article, 2009, 18:320-332.
[68] 邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报,2012, 33(2):173-187.ZOU C N, ZHU R K, WU S T, et al. Types characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations:taking tight oil and tight gas in China an instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187.

备注/Memo

备注/Memo:
收稿日期:2024-02-17;改回日期:2024-03-12。
基金项目:国家自然科学基金"下扬子地区奥陶纪—志留纪转折期开放型海盆古海洋氧化还原环境演变(编号:42302124)"、国家重点研发计划课题"东亚陆缘中生代构造过程及盆地形成演化(编号:2022YFF0800401)"和中国地质调查局"苏皖沿江凹陷带油气页岩气调查评价(编号:DD20221662)"项目联合资助。
第一作者简介:章诚诚,1989生,男,高级工程师,博士,主要从事沉积地质研究工作。Email:1007557887@qq.com。
通信作者简介:方朝刚,1987生,男,高级工程师,硕士,主要从事油气地质调查工作。Email:fangchaogang206@163.com。
更新日期/Last Update: 1900-01-01